{"title":"Fundus imaging using DCRA toward large eyebox","authors":"Yuichi Atarashi, Kazuki Otao, Takahito Aoto, Yoichi Ochiai","doi":"10.1145/3355056.3364579","DOIUrl":null,"url":null,"abstract":"We propose a novel fundus imaging system using a dihedral corner reflector array (DCRA) that is an optical component to work as a lens but does not have a focal length or an optical axis. A DCRA has a feature that transfers a light source into a plane symmetric point. Conventionally, using this feature, a DCRA has been used to many display applications, such as virtual retinal display and three-dimensional display, in the field of computer graphics. On the other hand, as a sensing application, we use a DCRA for setting a virtual camera in/on an eyeball to capture a fundus. The proposed system has three features; (1) robust to eye movement, (2) wavelength-independent, (3) a simple optical system. In the experiments, the proposed system achieves 8 mm of large eyebox. The proposed system has a possibility to be applied to preventive medicine for households that can be used in daily life.","PeriodicalId":101958,"journal":{"name":"SIGGRAPH Asia 2019 Posters","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2019 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355056.3364579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a novel fundus imaging system using a dihedral corner reflector array (DCRA) that is an optical component to work as a lens but does not have a focal length or an optical axis. A DCRA has a feature that transfers a light source into a plane symmetric point. Conventionally, using this feature, a DCRA has been used to many display applications, such as virtual retinal display and three-dimensional display, in the field of computer graphics. On the other hand, as a sensing application, we use a DCRA for setting a virtual camera in/on an eyeball to capture a fundus. The proposed system has three features; (1) robust to eye movement, (2) wavelength-independent, (3) a simple optical system. In the experiments, the proposed system achieves 8 mm of large eyebox. The proposed system has a possibility to be applied to preventive medicine for households that can be used in daily life.