Big data analytics for climate change and biodiversity in the EUBrazilCC federated cloud infrastructure

S. Fiore, Marco Mancini, D. Elia, P. Nassisi, F. Brasileiro, I. Blanquer, Iana A. A. Rufino, A. Seijmonsbergen, Carlos de Oliveira Galvao, V. Canhos, Andrea Mariello, Cosimo Palazzo, A. Nuzzo, Alessandro D'Anca, G. Aloisio
{"title":"Big data analytics for climate change and biodiversity in the EUBrazilCC federated cloud infrastructure","authors":"S. Fiore, Marco Mancini, D. Elia, P. Nassisi, F. Brasileiro, I. Blanquer, Iana A. A. Rufino, A. Seijmonsbergen, Carlos de Oliveira Galvao, V. Canhos, Andrea Mariello, Cosimo Palazzo, A. Nuzzo, Alessandro D'Anca, G. Aloisio","doi":"10.1145/2742854.2747282","DOIUrl":null,"url":null,"abstract":"The analysis of large volumes of data is key for knowledge discovery in several scientific domains such as climate, astrophysics, life sciences among others. It requires a large set of computational and storage resources, as well as flexible and efficient software solutions able to dynamically exploit the available infrastructure and address issues related to data volume, distribution, velocity and heterogeneity. This paper presents a data-driven and cloud-based use case implemented in the context of the EUBrazilCC project for the analysis of climate change and biodiversity data. The use case architecture and main components, as well as a Platform as a Service (PaaS) framework for big data analytics named PDAS, together with its elastic deployment in the EUBrazilCC federated cloud infrastructure are presented and discussed in detail.","PeriodicalId":417279,"journal":{"name":"Proceedings of the 12th ACM International Conference on Computing Frontiers","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742854.2747282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The analysis of large volumes of data is key for knowledge discovery in several scientific domains such as climate, astrophysics, life sciences among others. It requires a large set of computational and storage resources, as well as flexible and efficient software solutions able to dynamically exploit the available infrastructure and address issues related to data volume, distribution, velocity and heterogeneity. This paper presents a data-driven and cloud-based use case implemented in the context of the EUBrazilCC project for the analysis of climate change and biodiversity data. The use case architecture and main components, as well as a Platform as a Service (PaaS) framework for big data analytics named PDAS, together with its elastic deployment in the EUBrazilCC federated cloud infrastructure are presented and discussed in detail.
EUBrazilCC联合云基础设施中的气候变化和生物多样性大数据分析
对大量数据的分析是在气候、天体物理学、生命科学等多个科学领域发现知识的关键。它需要大量的计算和存储资源,以及灵活高效的软件解决方案,能够动态地利用可用的基础设施,并解决与数据量、分布、速度和异构性相关的问题。本文介绍了在EUBrazilCC项目背景下实施的一个数据驱动和基于云的用例,用于分析气候变化和生物多样性数据。详细介绍了用例架构和主要组件,以及用于大数据分析的平台即服务(PaaS)框架PDAS,以及它在EUBrazilCC联邦云基础设施中的弹性部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信