{"title":"A Practical Online Allocation Framework at Industry-scale in Constrained Recommendation","authors":"Daohong Jian, Yang Bao, Jun Zhou, Hua Wu","doi":"10.1145/3539618.3591835","DOIUrl":null,"url":null,"abstract":"Online allocation is a critical challenge in constrained recommendation systems, where the distribution of goods, ads, vouchers, and other content to users with limited resources needs to be managed effectively. While the existing literature has made significant progress in improving recommendation algorithms for various scenarios, less attention has been given to developing and deploying industry-scale online allocation system in an efficient manner. To address this issue, this paper introduces an integrated and efficient learning framework in constrained recommendation scenarios at Alipay. The framework has been tested through experiments, demonstrating its superiority over other state-of-the-art methods.","PeriodicalId":425056,"journal":{"name":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539618.3591835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Online allocation is a critical challenge in constrained recommendation systems, where the distribution of goods, ads, vouchers, and other content to users with limited resources needs to be managed effectively. While the existing literature has made significant progress in improving recommendation algorithms for various scenarios, less attention has been given to developing and deploying industry-scale online allocation system in an efficient manner. To address this issue, this paper introduces an integrated and efficient learning framework in constrained recommendation scenarios at Alipay. The framework has been tested through experiments, demonstrating its superiority over other state-of-the-art methods.