Ivan Grasso, Klaus Kofler, Biagio Cosenza, T. Fahringer
{"title":"Automatic problem size sensitive task partitioning on heterogeneous parallel systems","authors":"Ivan Grasso, Klaus Kofler, Biagio Cosenza, T. Fahringer","doi":"10.1145/2442516.2442545","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach which automatizes task partitioning in heterogeneous systems. Our framework is based on the Insieme Compiler and Runtime infrastructure. The compiler translates a single-device OpenCL program into a multi-device OpenCL program. The runtime system then performs dynamic task partitioning based on an offline-generated prediction model. In order to derive the prediction model, we use a machine learning approach that incorporates static program features as well as dynamic, input sensitive features. Our approach has been evaluated over a suite of 23 programs and achieves performance improvements compared to an execution of the benchmarks on a single CPU and a single GPU only.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2442516.2442545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
In this paper we propose a novel approach which automatizes task partitioning in heterogeneous systems. Our framework is based on the Insieme Compiler and Runtime infrastructure. The compiler translates a single-device OpenCL program into a multi-device OpenCL program. The runtime system then performs dynamic task partitioning based on an offline-generated prediction model. In order to derive the prediction model, we use a machine learning approach that incorporates static program features as well as dynamic, input sensitive features. Our approach has been evaluated over a suite of 23 programs and achieves performance improvements compared to an execution of the benchmarks on a single CPU and a single GPU only.