Fast, Explainable View Detection to Characterize Exploration Queries

Thibault Sellam, M. Kersten
{"title":"Fast, Explainable View Detection to Characterize Exploration Queries","authors":"Thibault Sellam, M. Kersten","doi":"10.1145/2949689.2949692","DOIUrl":null,"url":null,"abstract":"The aim of data exploration is to get acquainted with an unfamiliar database. Typically, explorers operate by trial and error: they submit a query, study the result, and refine their query subsequently. In this paper, we investigate how to help them understand their query results. In particular, we focus on medium to high dimension spaces: if the database contains dozens or hundreds of columns, which variables should they inspect? We propose to detect subspaces in which the users' selection is different from the rest of the database. From this idea, we built Ziggy, a tuple description engine. Ziggy can detect informative subspaces, and it can explain why it recommends them, with visualizations and natural language. It can cope with mixed data, missing values, and it penalizes redundancy. Our experiments reveal that it is up to an order of magnitude faster than state-of-the-art feature selection algorithms, at minimal accuracy costs.","PeriodicalId":254803,"journal":{"name":"Proceedings of the 28th International Conference on Scientific and Statistical Database Management","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2949689.2949692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The aim of data exploration is to get acquainted with an unfamiliar database. Typically, explorers operate by trial and error: they submit a query, study the result, and refine their query subsequently. In this paper, we investigate how to help them understand their query results. In particular, we focus on medium to high dimension spaces: if the database contains dozens or hundreds of columns, which variables should they inspect? We propose to detect subspaces in which the users' selection is different from the rest of the database. From this idea, we built Ziggy, a tuple description engine. Ziggy can detect informative subspaces, and it can explain why it recommends them, with visualizations and natural language. It can cope with mixed data, missing values, and it penalizes redundancy. Our experiments reveal that it is up to an order of magnitude faster than state-of-the-art feature selection algorithms, at minimal accuracy costs.
快速,可解释的视图检测,以表征探索查询
数据探索的目的是熟悉一个不熟悉的数据库。通常,探索者通过试错操作:他们提交查询,研究结果,然后改进他们的查询。在本文中,我们研究如何帮助他们理解他们的查询结果。我们特别关注中高维度空间:如果数据库包含数十或数百列,应该检查哪些变量?我们建议检测用户选择与数据库其他部分不同的子空间。基于这个想法,我们构建了Ziggy,一个元组描述引擎。Ziggy可以检测信息丰富的子空间,并可以用可视化和自然语言解释它为什么推荐它们。它可以处理混合数据、缺失值和惩罚冗余。我们的实验表明,在最小的精度成本下,它比最先进的特征选择算法快一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信