Semi-blind Speech-Music Separation Using Sparsity and Continuity Priors

Hakan Erdogan, Emad M. Grais
{"title":"Semi-blind Speech-Music Separation Using Sparsity and Continuity Priors","authors":"Hakan Erdogan, Emad M. Grais","doi":"10.1109/ICPR.2010.1129","DOIUrl":null,"url":null,"abstract":"In this paper we propose an approach for the problem of single channel source separation of speech and music signals. Our approach is based on representing each source's power spectral density using dictionaries and nonlinearly projecting the mixture signal spectrum onto the combined span of the dictionary entries. We encourage sparsity and continuity of the dictionary coefficients using penalty terms (or log-priors) in an optimization framework. We propose to use a novel coordinate descent technique for optimization, which nicely handles nonnegativity constraints and nonquadratic penalty terms. We use an adaptive Wiener filter, and spectral subtraction to reconstruct both of the sources from the mixture data after corresponding power spectral densities (PSDs) are estimated for each source. Using conventional metrics, we measure the performance of the system on simulated mixtures of single person speech and piano music sources. The results indicate that the proposed method is a promising technique for low speech-to-music ratio conditions and that sparsity and continuity priors help improve the performance of the proposed system.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.1129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we propose an approach for the problem of single channel source separation of speech and music signals. Our approach is based on representing each source's power spectral density using dictionaries and nonlinearly projecting the mixture signal spectrum onto the combined span of the dictionary entries. We encourage sparsity and continuity of the dictionary coefficients using penalty terms (or log-priors) in an optimization framework. We propose to use a novel coordinate descent technique for optimization, which nicely handles nonnegativity constraints and nonquadratic penalty terms. We use an adaptive Wiener filter, and spectral subtraction to reconstruct both of the sources from the mixture data after corresponding power spectral densities (PSDs) are estimated for each source. Using conventional metrics, we measure the performance of the system on simulated mixtures of single person speech and piano music sources. The results indicate that the proposed method is a promising technique for low speech-to-music ratio conditions and that sparsity and continuity priors help improve the performance of the proposed system.
基于稀疏性和连续性先验的半盲语音-音乐分离
本文针对语音和音乐信号的单通道源分离问题提出了一种方法。我们的方法是基于使用字典表示每个源的功率谱密度,并将混合信号频谱非线性地投影到字典条目的组合范围上。我们在优化框架中使用惩罚项(或log-prior)鼓励字典系数的稀疏性和连续性。我们建议使用一种新的坐标下降技术进行优化,它很好地处理了非负性约束和非二次惩罚项。我们使用自适应维纳滤波和谱减法从混合数据中重建两个源,并估计每个源对应的功率谱密度(psd)。使用传统的度量标准,我们测量了系统在模拟单人语音和钢琴音乐源的混合上的性能。结果表明,该方法在低音比条件下是一种很有前途的技术,稀疏性和连续性先验有助于提高系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信