Comparison of Yolo, SSD, Faster RCNN for Real Time Tennis Ball Tracking for Action Decision Networks

R. Deepa, E. Tamilselvan, ES Abrar, Shrinivas Sampath
{"title":"Comparison of Yolo, SSD, Faster RCNN for Real Time Tennis Ball Tracking for Action Decision Networks","authors":"R. Deepa, E. Tamilselvan, ES Abrar, Shrinivas Sampath","doi":"10.1109/ICACCE46606.2019.9079965","DOIUrl":null,"url":null,"abstract":"This paper describes a systemic approach that analyses tennis videos to estimate its trajectory when the ball is tossed by the player. This system will reconstruct the trajectory of the ball by combining various image processing techniques to interpret the video frames using Action Decision networks. The project estimates the ball location using multiple-view geometry and state estimation filtering. Image processing concepts like image segmentation, morphological image processing are employed. We will perform the project using three different algorithms namely YOLO, SSD and Faster RCNN. A comparison is done using the three different algorithms and the performance of the different algorithms will be determined for the detection of a tennis ball. Software has been developed to compare the algorithms and to find the algorithm that is more efficient and has less computational power.","PeriodicalId":317123,"journal":{"name":"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCE46606.2019.9079965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper describes a systemic approach that analyses tennis videos to estimate its trajectory when the ball is tossed by the player. This system will reconstruct the trajectory of the ball by combining various image processing techniques to interpret the video frames using Action Decision networks. The project estimates the ball location using multiple-view geometry and state estimation filtering. Image processing concepts like image segmentation, morphological image processing are employed. We will perform the project using three different algorithms namely YOLO, SSD and Faster RCNN. A comparison is done using the three different algorithms and the performance of the different algorithms will be determined for the detection of a tennis ball. Software has been developed to compare the algorithms and to find the algorithm that is more efficient and has less computational power.
Yolo, SSD, Faster RCNN在动作决策网络中实时网球跟踪的比较
本文描述了一种系统的方法,通过分析网球视频来估计球员抛球时的轨迹。该系统将通过结合各种图像处理技术来重建球的轨迹,并使用动作决策网络来解释视频帧。该项目使用多视图几何和状态估计滤波来估计球的位置。使用图像分割、形态学图像处理等图像处理概念。我们将使用三种不同的算法,即YOLO, SSD和Faster RCNN来执行该项目。使用三种不同的算法进行比较,并确定不同算法的性能用于网球的检测。已经开发了软件来比较算法,并找到更有效和更少计算能力的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信