Comparing Approaches for Automatic Question Identification

Angel Maredia, Kara Schechtman, Sarah Ita Levitan, Julia Hirschberg
{"title":"Comparing Approaches for Automatic Question Identification","authors":"Angel Maredia, Kara Schechtman, Sarah Ita Levitan, Julia Hirschberg","doi":"10.18653/v1/S17-1013","DOIUrl":null,"url":null,"abstract":"Collecting spontaneous speech corpora that are open-ended, yet topically constrained, is increasingly popular for research in spoken dialogue systems and speaker state, inter alia. Typically, these corpora are labeled by human annotators, either in the lab or through crowd-sourcing; however, this is cumbersome and time-consuming for large corpora. We present four different approaches to automatically tagging a corpus when general topics of the conversations are known. We develop these approaches on the Columbia X-Cultural Deception corpus and find accuracy that significantly exceeds the baseline. Finally, we conduct a cross-corpus evaluation by testing the best performing approach on the Columbia/SRI/Colorado corpus.","PeriodicalId":344435,"journal":{"name":"Joint Conference on Lexical and Computational Semantics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Conference on Lexical and Computational Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/S17-1013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Collecting spontaneous speech corpora that are open-ended, yet topically constrained, is increasingly popular for research in spoken dialogue systems and speaker state, inter alia. Typically, these corpora are labeled by human annotators, either in the lab or through crowd-sourcing; however, this is cumbersome and time-consuming for large corpora. We present four different approaches to automatically tagging a corpus when general topics of the conversations are known. We develop these approaches on the Columbia X-Cultural Deception corpus and find accuracy that significantly exceeds the baseline. Finally, we conduct a cross-corpus evaluation by testing the best performing approach on the Columbia/SRI/Colorado corpus.
自动问题识别方法的比较
在口语对话系统和说话人状态等方面的研究中,收集开放性的、但受话题限制的自发语音语料库越来越受欢迎。通常,这些语料库是由人类注释者标记的,要么在实验室里,要么通过众包;然而,对于大型语料库来说,这既麻烦又耗时。当对话的一般主题已知时,我们提出了四种不同的方法来自动标记语料库。我们在哥伦比亚x文化欺骗语料库上开发了这些方法,并发现准确性大大超过了基线。最后,我们通过在Columbia/SRI/Colorado语料库上测试表现最佳的方法来进行跨语料库评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信