Soft decision decoding of Reed Solomon codes

V. Ponnampalam, B. Vucetic
{"title":"Soft decision decoding of Reed Solomon codes","authors":"V. Ponnampalam, B. Vucetic","doi":"10.1109/ISIT.2000.866352","DOIUrl":null,"url":null,"abstract":"The paper presents a maximum likelihood decoding (MLD) and a sub-optimum decoding algorithm for Reed-Solomon codes. The proposed algorithms are based on the algebraic structure of RS codes represented in GF(2). Theoretical bounds on the performance are derived and shown to be accurate. The proposed sub-optimum algorithm is seen to have better error performance compared to other sub-optimum decoding algorithms while the new MLD algorithm has significantly lower decoding complexity when compared to other MLD algorithms.","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a maximum likelihood decoding (MLD) and a sub-optimum decoding algorithm for Reed-Solomon codes. The proposed algorithms are based on the algebraic structure of RS codes represented in GF(2). Theoretical bounds on the performance are derived and shown to be accurate. The proposed sub-optimum algorithm is seen to have better error performance compared to other sub-optimum decoding algorithms while the new MLD algorithm has significantly lower decoding complexity when compared to other MLD algorithms.
软判决解码里德所罗门码
提出了Reed-Solomon码的最大似然译码算法和次优译码算法。所提出的算法是基于GF(2)中表示的RS码的代数结构。推导了性能的理论界限,并证明是准确的。与其他次优译码算法相比,本文提出的次优算法具有更好的误差性能,而与其他MLD算法相比,新MLD算法的译码复杂度显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信