{"title":"Gesture Enhanced Comprehension of Ambiguous Human-to-Robot Instructions","authors":"Dulanga Weerakoon, Vigneshwaran Subbaraju, Nipuni Karumpulli, Tuan Tran, Qianli Xu, U-Xuan Tan, Joo-Hwee Lim, Archan Misra","doi":"10.1145/3382507.3418863","DOIUrl":null,"url":null,"abstract":"This work demonstrates the feasibility and benefits of using pointing gestures, a naturally-generated additional input modality, to improve the multi-modal comprehension accuracy of human instructions to robotic agents for collaborative tasks.We present M2Gestic, a system that combines neural-based text parsing with a novel knowledge-graph traversal mechanism, over a multi-modal input of vision, natural language text and pointing. Via multiple studies related to a benchmark table top manipulation task, we show that (a) M2Gestic can achieve close-to-human performance in reasoning over unambiguous verbal instructions, and (b) incorporating pointing input (even with its inherent location uncertainty) in M2Gestic results in a significant (30%) accuracy improvement when verbal instructions are ambiguous.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3418863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This work demonstrates the feasibility and benefits of using pointing gestures, a naturally-generated additional input modality, to improve the multi-modal comprehension accuracy of human instructions to robotic agents for collaborative tasks.We present M2Gestic, a system that combines neural-based text parsing with a novel knowledge-graph traversal mechanism, over a multi-modal input of vision, natural language text and pointing. Via multiple studies related to a benchmark table top manipulation task, we show that (a) M2Gestic can achieve close-to-human performance in reasoning over unambiguous verbal instructions, and (b) incorporating pointing input (even with its inherent location uncertainty) in M2Gestic results in a significant (30%) accuracy improvement when verbal instructions are ambiguous.