A Scalable Content-based Image Retrieval Scheme Using Locality-sensitive Hashing

Wang Weihong, Wang Song
{"title":"A Scalable Content-based Image Retrieval Scheme Using Locality-sensitive Hashing","authors":"Wang Weihong, Wang Song","doi":"10.1109/CINC.2009.124","DOIUrl":null,"url":null,"abstract":"To develop a fast solution for indexing high-dimensional image contents, which is crucial to building large-scale CBIR systems, is one key challenge in content-based image retrieval (CBIR). In this paper, we propose a scalable content-based image retrieval scheme using locality-sensitive hashing (LSH), and conduct extensive evaluations on a large image test-bed of a half million images. To the best of our knowledge, there is less comprehensive study on large-scale CBIR evaluation with a half million images. Our empirical results show that our proposed solution is able to scale for hundreds of thousands of images, which is promising for building web-scale CBIR systems.","PeriodicalId":173506,"journal":{"name":"2009 International Conference on Computational Intelligence and Natural Computing","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2009.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

To develop a fast solution for indexing high-dimensional image contents, which is crucial to building large-scale CBIR systems, is one key challenge in content-based image retrieval (CBIR). In this paper, we propose a scalable content-based image retrieval scheme using locality-sensitive hashing (LSH), and conduct extensive evaluations on a large image test-bed of a half million images. To the best of our knowledge, there is less comprehensive study on large-scale CBIR evaluation with a half million images. Our empirical results show that our proposed solution is able to scale for hundreds of thousands of images, which is promising for building web-scale CBIR systems.
使用位置敏感哈希的可扩展的基于内容的图像检索方案
基于内容的图像检索(CBIR)技术面临的一个关键挑战是如何开发一种快速的高维图像内容索引方法,这对于构建大规模的图像检索系统至关重要。在本文中,我们提出了一种使用位置敏感散列(LSH)的可扩展的基于内容的图像检索方案,并在一个包含50万张图像的大型图像测试台上进行了广泛的评估。据我们所知,目前对50万张图像的大规模CBIR评价的研究还不够全面。我们的实证结果表明,我们提出的解决方案能够扩展到数十万张图像,这对于构建web规模的CBIR系统是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信