Enriching Traffic Information with a Spatiotemporal Model based on Social Media

B. P. Santos, Paulo H. L. Rettore, Heitor S. Ramos, L. Vieira, A. Loureiro
{"title":"Enriching Traffic Information with a Spatiotemporal Model based on Social Media","authors":"B. P. Santos, Paulo H. L. Rettore, Heitor S. Ramos, L. Vieira, A. Loureiro","doi":"10.1109/ISCC.2018.8538665","DOIUrl":null,"url":null,"abstract":"In this work, we argue that Location-Based Social Media (LBSM) feeds may offer a new layer to improve traffic and transit comprehension. Initially, we showed the significant correlation between Twitter’s feed and traditional traffic sensors. Then, we presented the Twitter MAPS (T-MAPS) a low-cost spatiotemporal model to improve the description of traffic conditions through tweets. T-MAPS enhance traditional traffic sensors by carrying the human lens into the transportation system. We conducted a case study by running T-MAPS and Google Maps route recommendation, in which, we showed T-MAPS viability, as an additional traffic descriptor. As a result, we noticed the median of route similarity reached 62%, and for a quarter of the evaluated trajectories, the similarity achieved between 75% and 100%. Also, we presented three route description services, based on natural language analyzes, Route Sentiment (RS), Route Information (RI), and Area’ Tags (AT) aiming to enhance the route information.","PeriodicalId":233592,"journal":{"name":"2018 IEEE Symposium on Computers and Communications (ISCC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2018.8538665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this work, we argue that Location-Based Social Media (LBSM) feeds may offer a new layer to improve traffic and transit comprehension. Initially, we showed the significant correlation between Twitter’s feed and traditional traffic sensors. Then, we presented the Twitter MAPS (T-MAPS) a low-cost spatiotemporal model to improve the description of traffic conditions through tweets. T-MAPS enhance traditional traffic sensors by carrying the human lens into the transportation system. We conducted a case study by running T-MAPS and Google Maps route recommendation, in which, we showed T-MAPS viability, as an additional traffic descriptor. As a result, we noticed the median of route similarity reached 62%, and for a quarter of the evaluated trajectories, the similarity achieved between 75% and 100%. Also, we presented three route description services, based on natural language analyzes, Route Sentiment (RS), Route Information (RI), and Area’ Tags (AT) aiming to enhance the route information.
基于社交媒体的时空模型丰富交通信息
在这项工作中,我们认为基于位置的社交媒体(LBSM)提要可以提供一个新的层次来提高交通和交通的理解。最初,我们展示了Twitter feed和传统交通传感器之间的显著相关性。然后,我们提出了推特地图(T-MAPS)这一低成本的时空模型,通过推特来改进交通状况的描述。T-MAPS通过将人类镜头带入交通系统来增强传统的交通传感器。我们通过运行T-MAPS和Google Maps路线推荐进行了一个案例研究,在这个案例中,我们展示了T-MAPS作为额外的交通描述符的可行性。结果,我们注意到路线相似度的中位数达到62%,并且对于四分之一的评估轨迹,相似度达到75%到100%之间。此外,我们还提出了三种基于自然语言分析的路线描述服务,即路线情绪(route Sentiment, RS)、路线信息(route Information, RI)和区域标签(Area’Tags, AT),旨在增强路线信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信