B. P. Santos, Paulo H. L. Rettore, Heitor S. Ramos, L. Vieira, A. Loureiro
{"title":"Enriching Traffic Information with a Spatiotemporal Model based on Social Media","authors":"B. P. Santos, Paulo H. L. Rettore, Heitor S. Ramos, L. Vieira, A. Loureiro","doi":"10.1109/ISCC.2018.8538665","DOIUrl":null,"url":null,"abstract":"In this work, we argue that Location-Based Social Media (LBSM) feeds may offer a new layer to improve traffic and transit comprehension. Initially, we showed the significant correlation between Twitter’s feed and traditional traffic sensors. Then, we presented the Twitter MAPS (T-MAPS) a low-cost spatiotemporal model to improve the description of traffic conditions through tweets. T-MAPS enhance traditional traffic sensors by carrying the human lens into the transportation system. We conducted a case study by running T-MAPS and Google Maps route recommendation, in which, we showed T-MAPS viability, as an additional traffic descriptor. As a result, we noticed the median of route similarity reached 62%, and for a quarter of the evaluated trajectories, the similarity achieved between 75% and 100%. Also, we presented three route description services, based on natural language analyzes, Route Sentiment (RS), Route Information (RI), and Area’ Tags (AT) aiming to enhance the route information.","PeriodicalId":233592,"journal":{"name":"2018 IEEE Symposium on Computers and Communications (ISCC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2018.8538665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
In this work, we argue that Location-Based Social Media (LBSM) feeds may offer a new layer to improve traffic and transit comprehension. Initially, we showed the significant correlation between Twitter’s feed and traditional traffic sensors. Then, we presented the Twitter MAPS (T-MAPS) a low-cost spatiotemporal model to improve the description of traffic conditions through tweets. T-MAPS enhance traditional traffic sensors by carrying the human lens into the transportation system. We conducted a case study by running T-MAPS and Google Maps route recommendation, in which, we showed T-MAPS viability, as an additional traffic descriptor. As a result, we noticed the median of route similarity reached 62%, and for a quarter of the evaluated trajectories, the similarity achieved between 75% and 100%. Also, we presented three route description services, based on natural language analyzes, Route Sentiment (RS), Route Information (RI), and Area’ Tags (AT) aiming to enhance the route information.