Fixed point semantics and partial recursion in Coq

Yves Bertot, Vladimir Komendantsky
{"title":"Fixed point semantics and partial recursion in Coq","authors":"Yves Bertot, Vladimir Komendantsky","doi":"10.1145/1389449.1389461","DOIUrl":null,"url":null,"abstract":"We propose to use the Knaster-Tarski least fixed point theorem as a basis to define recursive functions in the Calculus of Inductive Constructions. This widens the class of functions that can be modelled in type-theory based theorem proving tools to potentially nonterminating functions. This is only possible if we extend the logical framework by adding some axioms of classical logic.We claim that the extended framework makes it possible to reason about terminating or non-terminating computations and we show that extraction can also be extended to handle the new functions","PeriodicalId":248980,"journal":{"name":"Proceedings of the 10th international ACM SIGPLAN conference on Principles and practice of declarative programming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th international ACM SIGPLAN conference on Principles and practice of declarative programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1389449.1389461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We propose to use the Knaster-Tarski least fixed point theorem as a basis to define recursive functions in the Calculus of Inductive Constructions. This widens the class of functions that can be modelled in type-theory based theorem proving tools to potentially nonterminating functions. This is only possible if we extend the logical framework by adding some axioms of classical logic.We claim that the extended framework makes it possible to reason about terminating or non-terminating computations and we show that extraction can also be extended to handle the new functions
Coq中的不动点语义和部分递归
本文提出利用Knaster-Tarski最小不动点定理来定义归纳构造演算中的递归函数。这扩大了可以在基于类型论的定理证明工具中建模的函数类到潜在的非终止函数。这只有在我们通过添加一些经典逻辑公理来扩展逻辑框架时才有可能。我们声称,扩展的框架使得对终止或非终止计算的推理成为可能,并且我们表明提取也可以扩展以处理新函数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信