{"title":"Symmetry and monotonicity of positive solutions for a class of general pseudo-relativistic systems","authors":"Xueying Chen, Guanfeng Li, Sijia Bao","doi":"10.3934/cpaa.2022045","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we focus on a class of general pseudo-relativistic systems</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{equation*} \\begin{cases} \\begin{aligned} &(-\\Delta+m^2)^su(x) = f(u(x), v(x)), \\\\ &(-\\Delta+m^2)^tv(x) = g(u(x), v(x)), \\end{aligned} \\end{cases} \\end{equation*} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ m \\in (0, +\\infty) $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M2\">\\begin{document}$ s, t \\in (0,1) $\\end{document}</tex-math></inline-formula>. Before giving the main results, we first introduce a decay at infinity and a narrow region principle. Then we implement the direct method of moving planes to show the radial symmetry and monotonicity of positive solutions for the above system in both the unit ball and the whole space.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we focus on a class of general pseudo-relativistic systems
where \begin{document}$ m \in (0, +\infty) $\end{document} and \begin{document}$ s, t \in (0,1) $\end{document}. Before giving the main results, we first introduce a decay at infinity and a narrow region principle. Then we implement the direct method of moving planes to show the radial symmetry and monotonicity of positive solutions for the above system in both the unit ball and the whole space.
In this paper, we focus on a class of general pseudo-relativistic systems \begin{document}$ \begin{equation*} \begin{cases} \begin{aligned} &(-\Delta+m^2)^su(x) = f(u(x), v(x)), \\ &(-\Delta+m^2)^tv(x) = g(u(x), v(x)), \end{aligned} \end{cases} \end{equation*} $\end{document} where \begin{document}$ m \in (0, +\infty) $\end{document} and \begin{document}$ s, t \in (0,1) $\end{document}. Before giving the main results, we first introduce a decay at infinity and a narrow region principle. Then we implement the direct method of moving planes to show the radial symmetry and monotonicity of positive solutions for the above system in both the unit ball and the whole space.