{"title":"Synthesizing versus Augmentation for Arabic Word Recognition with Convolutional Neural Networks","authors":"Reem Alaasam, Berat Kurar Barakat, Jihad El-Sana","doi":"10.1109/ASAR.2018.8480189","DOIUrl":null,"url":null,"abstract":"In this paper, we present a sub-word recognition method for historical Arabic manuscripts, using convolutional neural networks. We investigate the benefit of extending training set with synthetically created samples in comparison to augmentation. We show that annotating around ten pages of a manuscript and extending it, is sufficient for successful sub-word recognition in the whole manuscript. In addition, we show the contribution of using different combinations of training sets and compare their sub-word recognition performance in the whole manuscript.","PeriodicalId":165564,"journal":{"name":"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAR.2018.8480189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we present a sub-word recognition method for historical Arabic manuscripts, using convolutional neural networks. We investigate the benefit of extending training set with synthetically created samples in comparison to augmentation. We show that annotating around ten pages of a manuscript and extending it, is sufficient for successful sub-word recognition in the whole manuscript. In addition, we show the contribution of using different combinations of training sets and compare their sub-word recognition performance in the whole manuscript.