The Hölder continuous subsolution theorem for complex Hessian equations

A. Benali, A. Zeriahi
{"title":"The Hölder continuous subsolution theorem for complex Hessian equations","authors":"A. Benali, A. Zeriahi","doi":"10.5802/JEP.133","DOIUrl":null,"url":null,"abstract":"Let $\\Omega \\Subset \\mathbb C^n$ be a bounded strongly $m$-pseudoconvex domain ($1\\leq m\\leq n$) and $\\mu$ a positive Borel measure with finite mass on $\\Omega$. Then we solve the Holder continuous subsolution problem for the complex Hessian equation $(dd^c u)^m \\wedge \\beta^{n - m} = \\mu$ on $\\Omega$. Namely, we show that this equation admits a unique Holder continuous solution on $\\Omega$ with a given Holder continuous boundary values if it admits a Holder continuous subsolution on $\\Omega$. The main step in solving the problem is to establish a new capacity estimate showing that the $m$-Hessian measure of a Holder continuous $m$-subharmonic function on $\\Omega$ with zero boundary values is dominated by the $m$-Hessian capacity with respect to $\\Omega$ with an (explicit) exponent $\\tau > 1$.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Let $\Omega \Subset \mathbb C^n$ be a bounded strongly $m$-pseudoconvex domain ($1\leq m\leq n$) and $\mu$ a positive Borel measure with finite mass on $\Omega$. Then we solve the Holder continuous subsolution problem for the complex Hessian equation $(dd^c u)^m \wedge \beta^{n - m} = \mu$ on $\Omega$. Namely, we show that this equation admits a unique Holder continuous solution on $\Omega$ with a given Holder continuous boundary values if it admits a Holder continuous subsolution on $\Omega$. The main step in solving the problem is to establish a new capacity estimate showing that the $m$-Hessian measure of a Holder continuous $m$-subharmonic function on $\Omega$ with zero boundary values is dominated by the $m$-Hessian capacity with respect to $\Omega$ with an (explicit) exponent $\tau > 1$.
Hölder复Hessian方程的连续子解定理
设$\Omega \Subset \mathbb C^n$为强有界$m$ -伪凸域($1\leq m\leq n$), $\mu$为$\Omega$上有限质量的正Borel测度。然后在$\Omega$上求解了复Hessian方程$(dd^c u)^m \wedge \beta^{n - m} = \mu$的Holder连续子解问题。也就是说,我们证明,如果该方程在$\Omega$上有一个Holder连续子解,则在$\Omega$上有一个给定Holder连续边值的唯一Holder连续解。解决问题的主要步骤是建立一个新的容量估计,表明$\Omega$上具有零边值的Holder连续$m$ -次谐波函数的$m$ -Hessian测度由相对于$\Omega$具有(显式)指数$\tau > 1$的$m$ -Hessian容量支配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信