Evaluating the Usefulness of Unsupervised monitoring in Cultural Heritage Monuments

Charalampos Zafeiropoulos, Ioannis N. Tzortzis, I. Rallis, Eftychios E. Protopapadakis, N. Doulamis, A. Doulamis
{"title":"Evaluating the Usefulness of Unsupervised monitoring in Cultural Heritage Monuments","authors":"Charalampos Zafeiropoulos, Ioannis N. Tzortzis, I. Rallis, Eftychios E. Protopapadakis, N. Doulamis, A. Doulamis","doi":"10.3233/faia210086","DOIUrl":null,"url":null,"abstract":"In this paper, we scrutinize the effectiveness of various clustering techniques, investigating their applicability in Cultural Heritage monitoring applications. In the context of this paper, we detect the level of decomposition and corrosion on the walls of Saint Nicholas fort in Rhodes utilizing hyperspectral images. A total of 6 different clustering approaches have been evaluated over a set of 14 different orthorectified hyperspectral images. Experimental setup in this study involves K-means, Spectral, Meanshift, DBSCAN, Birch and Optics algorithms. For each of these techniques we evaluate its performance by the use of performance metrics such as Calinski-Harabasz, Davies-Bouldin indexes and Silhouette value. In this approach, we evaluate the outcomes of the clustering methods by comparing them with a set of annotated images which denotes the ground truth regarding the decomposition and/or corrosion area of the original images. The results depict that a few clustering techniques applied on the given dataset succeeded decent accuracy, precision, recall and f1 scores. Eventually, it was observed that the deterioration was detected quite accurately.","PeriodicalId":234167,"journal":{"name":"International Conference on Novelties in Intelligent Digital Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Novelties in Intelligent Digital Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/faia210086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we scrutinize the effectiveness of various clustering techniques, investigating their applicability in Cultural Heritage monitoring applications. In the context of this paper, we detect the level of decomposition and corrosion on the walls of Saint Nicholas fort in Rhodes utilizing hyperspectral images. A total of 6 different clustering approaches have been evaluated over a set of 14 different orthorectified hyperspectral images. Experimental setup in this study involves K-means, Spectral, Meanshift, DBSCAN, Birch and Optics algorithms. For each of these techniques we evaluate its performance by the use of performance metrics such as Calinski-Harabasz, Davies-Bouldin indexes and Silhouette value. In this approach, we evaluate the outcomes of the clustering methods by comparing them with a set of annotated images which denotes the ground truth regarding the decomposition and/or corrosion area of the original images. The results depict that a few clustering techniques applied on the given dataset succeeded decent accuracy, precision, recall and f1 scores. Eventually, it was observed that the deterioration was detected quite accurately.
评估文化遗产古迹中无人监督监测的有用性
在本文中,我们仔细研究了各种聚类技术的有效性,并调查了它们在文化遗产监测应用中的适用性。在本文的背景下,我们利用高光谱图像检测罗德岛圣尼古拉斯堡墙壁上的分解和腐蚀程度。在一组14张不同的正射影高光谱图像上,对6种不同的聚类方法进行了评估。本研究的实验设置包括K-means、Spectral、Meanshift、DBSCAN、Birch和Optics算法。对于每一种技术,我们通过使用诸如Calinski-Harabasz、Davies-Bouldin指数和Silhouette值等性能指标来评估其性能。在这种方法中,我们通过将聚类方法的结果与一组表示原始图像分解和/或腐蚀区域的基本事实的注释图像进行比较来评估聚类方法的结果。结果表明,在给定数据集上应用的几种聚类技术取得了不错的准确性、精密度、召回率和f1分数。最后,观察到,恶化是相当准确地检测到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信