{"title":"Selective expression of high molecular weight basic fibroblast growth factor confers a unique phenotype to NIH 3T3 cells.","authors":"N Quarto, D Talarico, R Florkiewicz, D B Rifkin","doi":"10.1091/mbc.2.9.699","DOIUrl":null,"url":null,"abstract":"<p><p>The phenotypes of NIH 3T3 cells transfected with basic fibroblast growth factor (bFGF) cDNAs that express only the high molecular weight (HMW) forms of bFGF, the 18-kDa form, or all forms were examined. Cells producing the 18 kDa or all forms of bFGF were transformed at high levels of growth factor expression but were nontransformed at low levels. Cell producing low levels of HMW forms of bFGF were growth impaired when compared with the parental cells. These cells tended to form multinucleated giant cells, did not grow in soft agar, were nontumorigenic, had a normal bFGF receptor number, and had a nontransformed morphology. Cells expressing high levels of HMW bFGFs had a transformed morphology and were tumorigenic. These data suggest a specific functional role for HMWbFGF.</p>","PeriodicalId":9671,"journal":{"name":"Cell regulation","volume":"2 9","pages":"699-708"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1091/mbc.2.9.699","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1091/mbc.2.9.699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101
Abstract
The phenotypes of NIH 3T3 cells transfected with basic fibroblast growth factor (bFGF) cDNAs that express only the high molecular weight (HMW) forms of bFGF, the 18-kDa form, or all forms were examined. Cells producing the 18 kDa or all forms of bFGF were transformed at high levels of growth factor expression but were nontransformed at low levels. Cell producing low levels of HMW forms of bFGF were growth impaired when compared with the parental cells. These cells tended to form multinucleated giant cells, did not grow in soft agar, were nontumorigenic, had a normal bFGF receptor number, and had a nontransformed morphology. Cells expressing high levels of HMW bFGFs had a transformed morphology and were tumorigenic. These data suggest a specific functional role for HMWbFGF.