Tiling Strategies for Distributed Point Cloud Databases

J. Szalai-Gindl, L. Dobos, I. Csabai
{"title":"Tiling Strategies for Distributed Point Cloud Databases","authors":"J. Szalai-Gindl, L. Dobos, I. Csabai","doi":"10.1145/3085504.3085537","DOIUrl":null,"url":null,"abstract":"Many large point clouds -- such as cosmological N-body simulations, intersections of road networks etc. -- are strongly clustered on a hierarchy of scales. In shared nothing distributed environments, optimized tiling of data is crucial to minimize cross-server communication and balance IO and processing load. We propose histogram-based tiling algorithms, a hierarchical tiling and a spectral clustering algorithm, that can be incorporated into the data extraction or transformation phase of a typical Extraction--Transformation--Loading (ETL) procedure. We define measures to characterize the performance of these tiling techniques with respect to typical spatial search operations, and evaluate the algorithms based on these measures using hierarchically clustered data sets.","PeriodicalId":431308,"journal":{"name":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3085504.3085537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many large point clouds -- such as cosmological N-body simulations, intersections of road networks etc. -- are strongly clustered on a hierarchy of scales. In shared nothing distributed environments, optimized tiling of data is crucial to minimize cross-server communication and balance IO and processing load. We propose histogram-based tiling algorithms, a hierarchical tiling and a spectral clustering algorithm, that can be incorporated into the data extraction or transformation phase of a typical Extraction--Transformation--Loading (ETL) procedure. We define measures to characterize the performance of these tiling techniques with respect to typical spatial search operations, and evaluate the algorithms based on these measures using hierarchically clustered data sets.
分布式点云数据库的平铺策略
许多大型点云——如宇宙n体模拟、道路网络的交叉路口等——都强烈地聚集在尺度的层次结构上。在无共享的分布式环境中,优化数据平铺对于最小化跨服务器通信和平衡IO和处理负载至关重要。我们提出了基于直方图的平铺算法,分层平铺算法和光谱聚类算法,这些算法可以合并到典型的提取-转换-加载(ETL)过程的数据提取或转换阶段。我们定义了一些指标来描述这些平铺技术在典型空间搜索操作方面的性能,并使用分层聚类数据集评估基于这些指标的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信