Linear quadratic control for sampled-data systems with stochastic delays

M. Wakaiki, Masaki Ogura, J. Hespanha
{"title":"Linear quadratic control for sampled-data systems with stochastic delays","authors":"M. Wakaiki, Masaki Ogura, J. Hespanha","doi":"10.23919/ACC.2017.7963242","DOIUrl":null,"url":null,"abstract":"We study optimal control for sampled-data systems with stochastic delays. Assuming that the delays can be modeled by a Markov chain and can be measured by controllers, we design a control law that minimizes an infinite-horizon continuous-time quadratic cost function. The resulting optimal control law can be efficiently computed offline by the iteration of a certain Riccati difference equation. We also obtain sufficient conditions in terms of linear matrix inequalities for stochastic stabilizability and detectability, which are used for the optimal controller design.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study optimal control for sampled-data systems with stochastic delays. Assuming that the delays can be modeled by a Markov chain and can be measured by controllers, we design a control law that minimizes an infinite-horizon continuous-time quadratic cost function. The resulting optimal control law can be efficiently computed offline by the iteration of a certain Riccati difference equation. We also obtain sufficient conditions in terms of linear matrix inequalities for stochastic stabilizability and detectability, which are used for the optimal controller design.
随机时滞采样数据系统的线性二次控制
研究了具有随机时滞的采样数据系统的最优控制问题。假设时滞可以用马尔可夫链建模,并且可以被控制器测量,我们设计了一个最小化无限视界连续时间二次代价函数的控制律。所得到的最优控制律可以通过对某Riccati差分方程的迭代进行离线高效计算。我们还利用线性矩阵不等式得到了随机稳定和可检测的充分条件,用于最优控制器的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信