Dependency-Aware Task Allocation Algorithm for Distributed Edge Computing

Jaewook Lee, Joonwoo Kim, Sangheon Pack, Haneul Ko
{"title":"Dependency-Aware Task Allocation Algorithm for Distributed Edge Computing","authors":"Jaewook Lee, Joonwoo Kim, Sangheon Pack, Haneul Ko","doi":"10.1109/INDIN41052.2019.8972185","DOIUrl":null,"url":null,"abstract":"To overcome the limitation of standalone edge computing in terms of computing power and resource, a concept of distributed edge computing has been introduced, where application tasks are distributed to multiple edge clouds for collaborative processing. To maximize the effectiveness of the distributed edge computing, we formulate an optimization problem of task allocation minimizing the application completion time. To mitigate high complexity overhead in the formulated problem, we devise a low-complexity heuristic algorithm called dependency-aware task allocation algorithm (DATA). Evaluation results demonstrate that DATA can reduce the completion time up to by 18% compared to conventional dependency-unaware task allocation schemes.","PeriodicalId":260220,"journal":{"name":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN41052.2019.8972185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To overcome the limitation of standalone edge computing in terms of computing power and resource, a concept of distributed edge computing has been introduced, where application tasks are distributed to multiple edge clouds for collaborative processing. To maximize the effectiveness of the distributed edge computing, we formulate an optimization problem of task allocation minimizing the application completion time. To mitigate high complexity overhead in the formulated problem, we devise a low-complexity heuristic algorithm called dependency-aware task allocation algorithm (DATA). Evaluation results demonstrate that DATA can reduce the completion time up to by 18% compared to conventional dependency-unaware task allocation schemes.
基于依赖感知的分布式边缘计算任务分配算法
为了克服独立边缘计算在计算能力和资源方面的限制,引入了分布式边缘计算的概念,将应用程序任务分发到多个边缘云中进行协同处理。为了使分布式边缘计算的效率最大化,我们提出了一个任务分配的优化问题,使应用程序完成时间最小化。为了减轻公式化问题中的高复杂性开销,我们设计了一种低复杂性的启发式算法,称为依赖感知任务分配算法(DATA)。评估结果表明,与传统的不依赖项任务分配方案相比,DATA可以将完成时间减少18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信