Unsupervised active contour model for multiphase inhomogeneous image segmentation

Yunyun Yang, Yi Zhao, Boying Wu, Hongpeng Wang
{"title":"Unsupervised active contour model for multiphase inhomogeneous image segmentation","authors":"Yunyun Yang, Yi Zhao, Boying Wu, Hongpeng Wang","doi":"10.1109/CISS.2014.6814164","DOIUrl":null,"url":null,"abstract":"This paper presents an unsupervised active contour model for multiphase inhomogeneous image segmentation. We propose the new model based on a local intensity fitting term and a phase balancing term by incorporating the idea of the local intensity fitting energy model into the phase balancing model. Instead of using intensity average constants, we use local fitting functions to approximate the intensities in different phases, thus the new model can segment inhomogeneous images. Besides, the new model can identify the number of phases automatically without any user input with the phase balancing term. Then a fast brute-force algorithm is provided to minimize the new nonlinear energy functional directly without computing the Euler-Lagrange equation. The new model has been applied to real images. Numerical results have demonstrated that the new model can deal with inhomogeneous images and give a reasonable number of phases simultaneously.","PeriodicalId":169460,"journal":{"name":"2014 48th Annual Conference on Information Sciences and Systems (CISS)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 48th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2014.6814164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an unsupervised active contour model for multiphase inhomogeneous image segmentation. We propose the new model based on a local intensity fitting term and a phase balancing term by incorporating the idea of the local intensity fitting energy model into the phase balancing model. Instead of using intensity average constants, we use local fitting functions to approximate the intensities in different phases, thus the new model can segment inhomogeneous images. Besides, the new model can identify the number of phases automatically without any user input with the phase balancing term. Then a fast brute-force algorithm is provided to minimize the new nonlinear energy functional directly without computing the Euler-Lagrange equation. The new model has been applied to real images. Numerical results have demonstrated that the new model can deal with inhomogeneous images and give a reasonable number of phases simultaneously.
多相非均匀图像分割的无监督主动轮廓模型
提出了一种用于多相非均匀图像分割的无监督主动轮廓模型。将局部强度拟合能量模型的思想引入到相位平衡模型中,提出了基于局部强度拟合项和相位平衡项的新模型。我们使用局部拟合函数来近似不同阶段的强度,而不是使用强度平均常数,从而使新模型能够分割非均匀图像。此外,该模型不需要用户输入相位平衡项即可自动识别相位数。在此基础上,提出了一种不需要计算欧拉-拉格朗日方程就能直接最小化新非线性能量泛函的快速蛮力算法。新模型已应用于实际图像。数值结果表明,该模型能够处理非均匀图像,同时给出合理的相位数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信