Predict the Best Graph Partitioning Strategy by Using Machine Learning Technology

Jiayi Shen, F. Huet
{"title":"Predict the Best Graph Partitioning Strategy by Using Machine Learning Technology","authors":"Jiayi Shen, F. Huet","doi":"10.1145/3301326.3301354","DOIUrl":null,"url":null,"abstract":"In this paper, we explore applying machine learning techniques to find a best partitioner for a given graph. We use some metrics to describe the graph, and use these metrics as the input and the partitioner ranking of a graph execution algorithm as the label to train a model. Our experiment shows KNN and decision tree are good models for this problem.","PeriodicalId":294040,"journal":{"name":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301326.3301354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we explore applying machine learning techniques to find a best partitioner for a given graph. We use some metrics to describe the graph, and use these metrics as the input and the partitioner ranking of a graph execution algorithm as the label to train a model. Our experiment shows KNN and decision tree are good models for this problem.
利用机器学习技术预测最佳图划分策略
在本文中,我们探索应用机器学习技术来寻找给定图的最佳分区。我们使用一些度量来描述图,并将这些度量作为输入,将图执行算法的分区排序作为标签来训练模型。我们的实验表明,KNN和决策树是解决这个问题的好模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信