Perceptual tempo estimation using GMM-regression

MIRUM '12 Pub Date : 2012-11-02 DOI:10.1145/2390848.2390861
G. Peeters, Joachim Flocon-Cholet
{"title":"Perceptual tempo estimation using GMM-regression","authors":"G. Peeters, Joachim Flocon-Cholet","doi":"10.1145/2390848.2390861","DOIUrl":null,"url":null,"abstract":"Most current tempo estimation algorithms suffer from the so-called octave estimation problems (estimating twice, thrice, half or one-third of a reference tempo). However, it is difficult to qualify an error as octave error without a clear definition of what is the reference tempo. For this reason, and given that tempo is mostly a perceptual notion, we study here the estimation of perceptual tempo. We consider the perceptual tempo as defined by the results of the large-scale experiment made at Last-FM in 2011. We assume that the perception of tempo is related to the rate of variation of four musical attributes: the variation of energy, of harmonic changes, of spectral balance and short-term-event-repetitions. We then propose the use of GMM-Regression to find the relationship between the perceptual tempo and the four musical attributes. In an experiment, we show that the estimation of the tempo provided by GMM-Regression over these attributes outperforms the one provided by a state-of-the-art tempo estimation algorithm. For this task GMM-Regression also largely outperforms SVM-Regression. We finally study the estimation of three perceptual tempo classes (\"Slow\", \"In Between\", \"Fast\") using both GMM-Regression and SVM-Classification.","PeriodicalId":199844,"journal":{"name":"MIRUM '12","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MIRUM '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390848.2390861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Most current tempo estimation algorithms suffer from the so-called octave estimation problems (estimating twice, thrice, half or one-third of a reference tempo). However, it is difficult to qualify an error as octave error without a clear definition of what is the reference tempo. For this reason, and given that tempo is mostly a perceptual notion, we study here the estimation of perceptual tempo. We consider the perceptual tempo as defined by the results of the large-scale experiment made at Last-FM in 2011. We assume that the perception of tempo is related to the rate of variation of four musical attributes: the variation of energy, of harmonic changes, of spectral balance and short-term-event-repetitions. We then propose the use of GMM-Regression to find the relationship between the perceptual tempo and the four musical attributes. In an experiment, we show that the estimation of the tempo provided by GMM-Regression over these attributes outperforms the one provided by a state-of-the-art tempo estimation algorithm. For this task GMM-Regression also largely outperforms SVM-Regression. We finally study the estimation of three perceptual tempo classes ("Slow", "In Between", "Fast") using both GMM-Regression and SVM-Classification.
基于gmm回归的知觉速度估计
大多数当前的速度估计算法都存在所谓的八度估计问题(估计参考速度的两倍、三倍、一半或三分之一)。然而,如果没有对参考速度的明确定义,就很难将错误定性为八度误差。由于这个原因,并且考虑到节奏主要是一种感知概念,我们在这里研究感知节奏的估计。我们认为知觉节奏是根据2011年Last-FM的大规模实验结果定义的。我们认为节奏的感知与四种音乐属性的变化率有关:能量的变化、谐波的变化、谱的平衡和短期事件重复。然后,我们建议使用gmm回归来发现感知速度与四个音乐属性之间的关系。在实验中,我们证明了GMM-Regression在这些属性上提供的速度估计优于最先进的速度估计算法。对于这个任务,GMM-Regression也在很大程度上优于SVM-Regression。最后,我们使用GMM-Regression和SVM-Classification研究了三种感知节奏类别(“慢”、“中间”、“快”)的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信