Detection Based Tracking of Unmanned Aerial Vehicles

Bedirhan Uzun, O. Eker, Hasan Saribas, Hakan Çevikalp
{"title":"Detection Based Tracking of Unmanned Aerial Vehicles","authors":"Bedirhan Uzun, O. Eker, Hasan Saribas, Hakan Çevikalp","doi":"10.1109/SIU.2019.8806391","DOIUrl":null,"url":null,"abstract":"Object tracking is one of the fundamental problems of computer vision, which has many difficulties such as fast camera motion, occlusion and similar objects. Today, small and lightweight single board computers with very high processing power have been developed. Real-time processing of the computer vision applications on unmanned aerial vehicles has become possible with the integration of such single board computers within UAVs. In this study, a hybrid method is developed to detect and track UAVs by another UAV. A deep learning based approach which is one of the fastest and most accurate method in the literature, YOLOv3 and YOLOv3-Tiny (You Only Look Once), are utilized to detect the UAV at the beginning of the video and when tracking of the UAV is failed. Kernelized Correlation Filter (KCF) is used for real time tracking purpose of the detected UAVs. A dataset is created that consists different UAVs to train and test YOLOv3. Performance of the proposed methods are evaluated on this dataset.","PeriodicalId":326275,"journal":{"name":"2019 27th Signal Processing and Communications Applications Conference (SIU)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2019.8806391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object tracking is one of the fundamental problems of computer vision, which has many difficulties such as fast camera motion, occlusion and similar objects. Today, small and lightweight single board computers with very high processing power have been developed. Real-time processing of the computer vision applications on unmanned aerial vehicles has become possible with the integration of such single board computers within UAVs. In this study, a hybrid method is developed to detect and track UAVs by another UAV. A deep learning based approach which is one of the fastest and most accurate method in the literature, YOLOv3 and YOLOv3-Tiny (You Only Look Once), are utilized to detect the UAV at the beginning of the video and when tracking of the UAV is failed. Kernelized Correlation Filter (KCF) is used for real time tracking purpose of the detected UAVs. A dataset is created that consists different UAVs to train and test YOLOv3. Performance of the proposed methods are evaluated on this dataset.
基于检测的无人机跟踪
目标跟踪是计算机视觉的基本问题之一,存在快速运动、遮挡和物体相似等问题。如今,已经开发出具有非常高处理能力的小而轻的单板计算机。随着这种单板计算机在无人机中的集成,计算机视觉应用在无人机上的实时处理成为可能。在本研究中,开发了一种混合方法来检测和跟踪另一架无人机。基于深度学习的方法是文献中最快和最准确的方法之一,YOLOv3和YOLOv3- tiny (You Only Look Once)用于在视频开始时和无人机跟踪失败时检测无人机。采用核化相关滤波器(KCF)对被探测无人机进行实时跟踪。创建一个由不同无人机组成的数据集来训练和测试YOLOv3。在此数据集上评估了所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信