{"title":"Adaptive fuzzy logic control","authors":"H. Kang, G. Vachtsevanos","doi":"10.1109/FUZZY.1992.258648","DOIUrl":null,"url":null,"abstract":"A systematic design procedure for fuzzy linguistic controllers with adaptive or learning capability is introduced. The design is based on stability and hierarchy of identification and control. The fuzzy rule-base is stored in a fuzzy hypercube and the fuzzy control action is computed via a fuzzy inference mechanism. Initial conditions for the elements of a fuzzy hypercube are obtained by an offline fuzzy clustering mechanism with large-grain uncertainty. Two fuzzy algorithms are developed: the first one is a fuzzy identification-learning algorithm and the second is a fuzzy control-inferencing algorithm. The fuzzy identification-learning algorithm updates the membership functions on the action side of the rules and the fuzzy control-inferencing algorithm calculates fuzzy control data. This approach guarantees the stability, convergence, and robustness of the closed-loop feedback system.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
A systematic design procedure for fuzzy linguistic controllers with adaptive or learning capability is introduced. The design is based on stability and hierarchy of identification and control. The fuzzy rule-base is stored in a fuzzy hypercube and the fuzzy control action is computed via a fuzzy inference mechanism. Initial conditions for the elements of a fuzzy hypercube are obtained by an offline fuzzy clustering mechanism with large-grain uncertainty. Two fuzzy algorithms are developed: the first one is a fuzzy identification-learning algorithm and the second is a fuzzy control-inferencing algorithm. The fuzzy identification-learning algorithm updates the membership functions on the action side of the rules and the fuzzy control-inferencing algorithm calculates fuzzy control data. This approach guarantees the stability, convergence, and robustness of the closed-loop feedback system.<>