Negative superluminal velocity and violation of Kramers-Kronig relations in causal optical systems

M. Tasgin
{"title":"Negative superluminal velocity and violation of Kramers-Kronig relations in causal optical systems","authors":"M. Tasgin","doi":"10.1103/physreva.103.013504","DOIUrl":null,"url":null,"abstract":"We investigate nonanalyticities (e.g., zeros and poles) of refractive index $n(\\omega)$ and group index $n_g(\\omega)$ in different optical setups. We first demonstrate that: while a Lorentzian dielectric has no nonanalyticity in the upper half of the complex frequency plane (CFP), its group index -- which governs the pulse-center propagation -- violates the Kramers-Kronig relations (KKRs). Thus, we classify the nonanalyticities as in the (a) first-order (refractive index or reflection) and (b) second-order (group index or group delay). The latter contains the derivative of the former. Then, we study a possible connection between the negative superluminal velocities and the presence of nonanalyticities in the upper half of the CFP. We show that presence of nonanalyticities in the upper half of the CFP for (a) the first-order response and (b) the second-order response are accompanied by the appearance of negative (a) phase velocity and (b) group velocity, respectively. We also distinguish between two kinds of superluminosity, $v>c$ and $v<0$, where we show that the second one ($v<0$) appears with the violation of KKRs.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreva.103.013504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate nonanalyticities (e.g., zeros and poles) of refractive index $n(\omega)$ and group index $n_g(\omega)$ in different optical setups. We first demonstrate that: while a Lorentzian dielectric has no nonanalyticity in the upper half of the complex frequency plane (CFP), its group index -- which governs the pulse-center propagation -- violates the Kramers-Kronig relations (KKRs). Thus, we classify the nonanalyticities as in the (a) first-order (refractive index or reflection) and (b) second-order (group index or group delay). The latter contains the derivative of the former. Then, we study a possible connection between the negative superluminal velocities and the presence of nonanalyticities in the upper half of the CFP. We show that presence of nonanalyticities in the upper half of the CFP for (a) the first-order response and (b) the second-order response are accompanied by the appearance of negative (a) phase velocity and (b) group velocity, respectively. We also distinguish between two kinds of superluminosity, $v>c$ and $v<0$, where we show that the second one ($v<0$) appears with the violation of KKRs.
因果光学系统中负超光速与Kramers-Kronig关系的违反
我们研究了折射率$n(\omega)$和群折射率$n_g(\omega)$在不同光学装置中的非分析性(例如,零点和极点)。我们首先证明:虽然洛伦兹电介质在复频率平面(CFP)的上半部分没有非解析性,但其控制脉冲中心传播的群指数违反了Kramers-Kronig关系(KKRs)。因此,我们将非分析性分类为(a)一阶(折射率或反射)和(b)二阶(群折射率或群延迟)。后者包含前者的导数。然后,我们研究了负超光速与CFP上半部分存在非分析性之间的可能联系。我们表明,(a)一阶响应和(b)二阶响应的CFP上半部分存在非分析性,分别伴随着负(a)相速度和负(b)群速度的出现。我们还区分了两种超光度,$v>c$和$v<0$,其中我们证明了第二种超光度($v<0$)的出现违反了KKRs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信