An information theoretic criterion for source number detection using the eigenvalues modified by Gerschgorin radius

Qunfei Zhang, Juan Ma, Jianguo Huang
{"title":"An information theoretic criterion for source number detection using the eigenvalues modified by Gerschgorin radius","authors":"Qunfei Zhang, Juan Ma, Jianguo Huang","doi":"10.1109/SAM.2008.4606899","DOIUrl":null,"url":null,"abstract":"AIC method shows good performance in low SNR but gives over-estimation for target number, while MDL can obtain consistent estimation in high SNR but shows bad performance in low SNR. In this paper, a new method for detecting the source number is proposed to take a good compromise between the AIC and the MDL, which bases on Gerschgorinpsilas disk theorem and information theoretic criterion. The method takes a Gerschgorin transform to the covariance matrix of the samples. According to that both the eigenvalues and the Gerschgorin radius have valuable information in distinguishing signal and noise, new eigenvalues modified by the Gerschgorin radius are then introduced to AIC with a new penalty function. Theoretical analysis indicates that the number estimation acquired by the modified AIC (MAIC) method is almost consistent estimation of the number of targets. MAIC method overcomes the drawback of AIC in inconsistent estimation for target number, Simulation and experimental results show the MAIC method is a robust multi-target detecting algorithm.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

AIC method shows good performance in low SNR but gives over-estimation for target number, while MDL can obtain consistent estimation in high SNR but shows bad performance in low SNR. In this paper, a new method for detecting the source number is proposed to take a good compromise between the AIC and the MDL, which bases on Gerschgorinpsilas disk theorem and information theoretic criterion. The method takes a Gerschgorin transform to the covariance matrix of the samples. According to that both the eigenvalues and the Gerschgorin radius have valuable information in distinguishing signal and noise, new eigenvalues modified by the Gerschgorin radius are then introduced to AIC with a new penalty function. Theoretical analysis indicates that the number estimation acquired by the modified AIC (MAIC) method is almost consistent estimation of the number of targets. MAIC method overcomes the drawback of AIC in inconsistent estimation for target number, Simulation and experimental results show the MAIC method is a robust multi-target detecting algorithm.
利用格schgorin半径修正的特征值检测源数的信息理论准则
AIC方法在低信噪比下表现出良好的性能,但对目标数有过高的估计,MDL方法在高信噪比下可以得到一致的估计,但在低信噪比下表现出较差的性能。本文基于Gerschgorinpsilas定理和信息论准则,提出了一种介于AIC和MDL之间的一种新的源数检测方法。该方法对样本的协方差矩阵进行Gerschgorin变换。根据特征值和Gerschgorin半径在信号和噪声区分中都具有重要的信息,利用新的罚函数将经Gerschgorin半径修正后的新特征值引入到AIC中。理论分析表明,改进的AIC (MAIC)方法得到的目标数估计几乎是一致的。MAIC方法克服了AIC方法对目标数估计不一致的缺点,仿真和实验结果表明,MAIC方法是一种鲁棒的多目标检测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信