{"title":"Identification of nonlinear dynamical system equations using dynamic mode decomposition under invariant quantity constraints","authors":"Florian De Vuyst , Pierre Villon","doi":"10.1016/j.crme.2019.11.013","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, an algorithm for identifying equations representing a continuous nonlinear dynamical system from a noise-free state and time-derivative state measurements is proposed. It is based on a variant of the extended dynamic mode decomposition. A particular attention is paid to guarantee that the physical invariant quantities stay constant along the integral curves. The numerical methodology is validated on a two-dimensional Lotka–Volterra system. For this case, the differential equations are perfectly retrieved from data measurements. Perspectives of extension to more complex systems are discussed.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 11","pages":"Pages 882-890"},"PeriodicalIF":1.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.013","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301846","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, an algorithm for identifying equations representing a continuous nonlinear dynamical system from a noise-free state and time-derivative state measurements is proposed. It is based on a variant of the extended dynamic mode decomposition. A particular attention is paid to guarantee that the physical invariant quantities stay constant along the integral curves. The numerical methodology is validated on a two-dimensional Lotka–Volterra system. For this case, the differential equations are perfectly retrieved from data measurements. Perspectives of extension to more complex systems are discussed.
期刊介绍:
The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.