Layout Analysis for Arabic Historical Document Images Using Machine Learning

S. S. Bukhari, T. Breuel, Abedelkadir Asi, Jihad El-Sana
{"title":"Layout Analysis for Arabic Historical Document Images Using Machine Learning","authors":"S. S. Bukhari, T. Breuel, Abedelkadir Asi, Jihad El-Sana","doi":"10.1109/ICFHR.2012.227","DOIUrl":null,"url":null,"abstract":"Page layout analysis is a fundamental step of any document image understanding system. We introduce an approach that segments text appearing in page margins (a.k.a side-notes text) from manuscripts with complex layout format. Simple and discriminative features are extracted in a connected-component level and subsequently robust feature vectors are generated. Multilayer perception classifier is exploited to classify connected components to the relevant class of text. A voting scheme is then applied to refine the resulting segmentation and produce the final classification. In contrast to state-of-the-art segmentation approaches, this method is independent of block segmentation, as well as pixel level analysis. The proposed method has been trained and tested on a dataset that contains a variety of complex side-notes layout formats, achieving a segmentation accuracy of about 95%.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

Page layout analysis is a fundamental step of any document image understanding system. We introduce an approach that segments text appearing in page margins (a.k.a side-notes text) from manuscripts with complex layout format. Simple and discriminative features are extracted in a connected-component level and subsequently robust feature vectors are generated. Multilayer perception classifier is exploited to classify connected components to the relevant class of text. A voting scheme is then applied to refine the resulting segmentation and produce the final classification. In contrast to state-of-the-art segmentation approaches, this method is independent of block segmentation, as well as pixel level analysis. The proposed method has been trained and tested on a dataset that contains a variety of complex side-notes layout formats, achieving a segmentation accuracy of about 95%.
使用机器学习的阿拉伯历史文献图像布局分析
页面布局分析是任何文档图像理解系统的基本步骤。我们介绍了一种方法,将出现在页边距的文本(又称旁注文本)从具有复杂布局格式的手稿中分割出来。在连通构件层面提取简单特征和判别特征,生成鲁棒特征向量。利用多层感知分类器将连接的成分分类到相关的文本类别中。然后应用投票方案来改进结果分割并产生最终分类。与最先进的分割方法相比,该方法独立于块分割和像素级分析。该方法在包含多种复杂侧注布局格式的数据集上进行了训练和测试,分割准确率达到95%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信