Design of Eigenportfolios for US Equities Using Exponential Correlation Model

A. Akansu, Anqi Xiong
{"title":"Design of Eigenportfolios for US Equities Using Exponential Correlation Model","authors":"A. Akansu, Anqi Xiong","doi":"10.1109/CISS.2019.8692939","DOIUrl":null,"url":null,"abstract":"The eigen decomposition of Toeplitz matrix, with exponential correlations as its elements, to model empirical correlations of US equity returns is investigated. Closed form expressions for eigenvalues and eigenvectors of such Toeplitz matrix are available. Those eigenvectors are used to design the eigenportfolios of the model. The Sharpe ratios and PNL curves of eigenportfolios for stocks in Dow Jones Industrial Average (DJIA) index for the period from July 1999 to Nov. 2018 are calculated to validate the model. The proposed method provides eigenportfolios that closely mimic the eigenportfolios designed based on empirical correlation matrix generated from market data. The modeling of empirical correlation matrix brings new insights to design and evaluate eigenportolios for US equities and other asset classes.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8692939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The eigen decomposition of Toeplitz matrix, with exponential correlations as its elements, to model empirical correlations of US equity returns is investigated. Closed form expressions for eigenvalues and eigenvectors of such Toeplitz matrix are available. Those eigenvectors are used to design the eigenportfolios of the model. The Sharpe ratios and PNL curves of eigenportfolios for stocks in Dow Jones Industrial Average (DJIA) index for the period from July 1999 to Nov. 2018 are calculated to validate the model. The proposed method provides eigenportfolios that closely mimic the eigenportfolios designed based on empirical correlation matrix generated from market data. The modeling of empirical correlation matrix brings new insights to design and evaluate eigenportolios for US equities and other asset classes.
利用指数相关模型设计美股特征投资组合
本文研究了以指数相关性为元素的Toeplitz矩阵的特征分解来模拟美国股票收益的经验相关性。给出了这种Toeplitz矩阵的特征值和特征向量的封闭表达式。这些特征向量被用来设计模型的特征组合。计算1999年7月至2018年11月期间道琼斯工业平均指数成分股特征组合的夏普比率和PNL曲线,验证模型的有效性。该方法提供的特征组合与基于市场数据生成的经验相关矩阵设计的特征组合非常相似。经验相关矩阵的建模为美国股票和其他资产类别的特征投资组合的设计和评估带来了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信