Video stabilization based on adaptive local subspace of feature point classification

Shuangshuang Fang, Xiaohong Ma, Zhong Cao
{"title":"Video stabilization based on adaptive local subspace of feature point classification","authors":"Shuangshuang Fang, Xiaohong Ma, Zhong Cao","doi":"10.1109/ICDSP.2016.7868623","DOIUrl":null,"url":null,"abstract":"Video stabilization removes jitters from shaking videos, which enhances videos quality to achieve stable and comfortable ones. In this paper, we propose a novel method for video stabilization. First, we classify feature points into inliers and outliers based on the global motion estimation to exclude the feature points on moving objects to stabilize camera movements without the interference of outliers. Second, we assemble the trajectory matrix with inlier trajectories across adaptive frames to guarantee sufficient complete trajectories for factorization. Then every frame is smoothed in separate local subspace. This model is more flexible than a global subspace. In addition, to make the inter-frame transition consistent, we exploit homography consistency to alleviate the abrupt transition of inter-frame segments. Experiments demonstrate that our results are comparable with the state-of-the-art methods.","PeriodicalId":206199,"journal":{"name":"2016 IEEE International Conference on Digital Signal Processing (DSP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2016.7868623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Video stabilization removes jitters from shaking videos, which enhances videos quality to achieve stable and comfortable ones. In this paper, we propose a novel method for video stabilization. First, we classify feature points into inliers and outliers based on the global motion estimation to exclude the feature points on moving objects to stabilize camera movements without the interference of outliers. Second, we assemble the trajectory matrix with inlier trajectories across adaptive frames to guarantee sufficient complete trajectories for factorization. Then every frame is smoothed in separate local subspace. This model is more flexible than a global subspace. In addition, to make the inter-frame transition consistent, we exploit homography consistency to alleviate the abrupt transition of inter-frame segments. Experiments demonstrate that our results are comparable with the state-of-the-art methods.
基于自适应局部子空间特征点分类的视频稳像
视频稳定消除抖动视频的抖动,从而提高视频质量,达到稳定和舒适的效果。本文提出了一种新的视频防抖方法。首先,基于全局运动估计,将特征点分为内线和离群点,排除运动物体上的特征点,在不受离群点干扰的情况下稳定摄像机运动;其次,我们将轨迹矩阵与自适应框架中的早期轨迹组合在一起,以保证足够完整的轨迹用于分解。然后在单独的局部子空间中对每一帧进行平滑处理。该模型比全局子空间更灵活。此外,为了使帧间过渡一致,我们利用单应性一致性来减轻帧间片段的突变。实验表明,我们的结果可与最先进的方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信