{"title":"Multi-scale MAP despeckling of sonar images","authors":"A. Isar, D. Isar, S. Moga, J. Augustin, X. Lurton","doi":"10.1109/OCEANSE.2005.1513246","DOIUrl":null,"url":null,"abstract":"The sonar images are perturbed by a multiplicative noise called speckle, due to the coherent nature of the scattering phenomenon. The use of speckle reduction filters is necessary to optimize the images exploitation procedures. This paper presents a new speckle reduction method in the wavelets domain using a novel Bayesian-based algorithm, which tends to reduce the speckle, preserving the structural features (like the discontinuities) and textural information of the scene. A blind speckle-suppression method that performs a nonlinear operation on the data, based on a new bishrink filter variant is obtained. Finally, some simulation examples prove the performances of the proposed denoising method. These performances are compared with the results obtained applying state-of-the-art speckle reduction techniques.","PeriodicalId":120840,"journal":{"name":"Europe Oceans 2005","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europe Oceans 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2005.1513246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
The sonar images are perturbed by a multiplicative noise called speckle, due to the coherent nature of the scattering phenomenon. The use of speckle reduction filters is necessary to optimize the images exploitation procedures. This paper presents a new speckle reduction method in the wavelets domain using a novel Bayesian-based algorithm, which tends to reduce the speckle, preserving the structural features (like the discontinuities) and textural information of the scene. A blind speckle-suppression method that performs a nonlinear operation on the data, based on a new bishrink filter variant is obtained. Finally, some simulation examples prove the performances of the proposed denoising method. These performances are compared with the results obtained applying state-of-the-art speckle reduction techniques.