Multi-objective Hyper-parameter Optimization of Behavioral Song Embeddings

Massimo Quadrana, Antoine Larreche-Mouly, Matthias Mauch
{"title":"Multi-objective Hyper-parameter Optimization of Behavioral Song Embeddings","authors":"Massimo Quadrana, Antoine Larreche-Mouly, Matthias Mauch","doi":"10.48550/arXiv.2208.12724","DOIUrl":null,"url":null,"abstract":"Song embeddings are a key component of most music recommendation engines. In this work, we study the hyper-parameter optimization of behavioral song embeddings based on Word2Vec on a selection of downstream tasks, namely next-song recommendation, false neighbor rejection, and artist and genre clustering. We present new optimization objectives and metrics to monitor the effects of hyper-parameter optimization. We show that single-objective optimization can cause side effects on the non optimized metrics and propose a simple multi-objective optimization to mitigate these effects. We find that next-song recommendation quality of Word2Vec is anti-correlated with song popularity, and we show how song embedding optimization can balance performance across different popularity levels. We then show potential positive downstream effects on the task of play prediction. Finally, we provide useful insights on the effects of training dataset scale by testing hyper-parameter optimization on an industry-scale dataset.","PeriodicalId":309903,"journal":{"name":"International Society for Music Information Retrieval Conference","volume":"384 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Society for Music Information Retrieval Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.12724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Song embeddings are a key component of most music recommendation engines. In this work, we study the hyper-parameter optimization of behavioral song embeddings based on Word2Vec on a selection of downstream tasks, namely next-song recommendation, false neighbor rejection, and artist and genre clustering. We present new optimization objectives and metrics to monitor the effects of hyper-parameter optimization. We show that single-objective optimization can cause side effects on the non optimized metrics and propose a simple multi-objective optimization to mitigate these effects. We find that next-song recommendation quality of Word2Vec is anti-correlated with song popularity, and we show how song embedding optimization can balance performance across different popularity levels. We then show potential positive downstream effects on the task of play prediction. Finally, we provide useful insights on the effects of training dataset scale by testing hyper-parameter optimization on an industry-scale dataset.
行为歌曲嵌入的多目标超参数优化
歌曲嵌入是大多数音乐推荐引擎的关键组成部分。在这项工作中,我们研究了基于Word2Vec的行为歌曲嵌入的超参数优化,选择下游任务,即下一首歌曲推荐,虚假邻居拒绝以及艺术家和类型聚类。我们提出了新的优化目标和指标来监测超参数优化的效果。我们证明了单目标优化可能会对非优化指标产生副作用,并提出了一个简单的多目标优化来减轻这些影响。我们发现Word2Vec的下一首歌曲推荐质量与歌曲受欢迎程度是反相关的,我们展示了歌曲嵌入优化如何在不同的受欢迎程度上平衡性能。然后,我们展示了游戏预测任务的潜在积极下游效应。最后,我们通过在工业规模数据集上测试超参数优化,提供了关于训练数据集规模影响的有用见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信