Shape matching of 3D contours using normalized Fourier descriptors

Hao Zhang, E. Fiume
{"title":"Shape matching of 3D contours using normalized Fourier descriptors","authors":"Hao Zhang, E. Fiume","doi":"10.1109/SMI.2002.1003554","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a simple, eigenspace matching algorithm for closed 3D contours. Our algorithm relies on a novel method which normalizes the Fourier descriptors (FDs) of a 3D contour with respect to two of its FD coefficients corresponding to the lowest non-zero frequencies. The remaining matching task only involves vertex shift and rotation about the z-axis. Our approach is inspired by the observation that the traditional Fourier transform of a 1D signal is equivalent to the decomposition of the signal into a linear combination of the eigenvectors of a smoothing operator. It turns out that our FD normalization is equivalent to aligning the limit plane approached by the sequence of progressively smoothed 3D contours with the xy-plane.","PeriodicalId":267347,"journal":{"name":"Proceedings SMI. Shape Modeling International 2002","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings SMI. Shape Modeling International 2002","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2002.1003554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper, we develop a simple, eigenspace matching algorithm for closed 3D contours. Our algorithm relies on a novel method which normalizes the Fourier descriptors (FDs) of a 3D contour with respect to two of its FD coefficients corresponding to the lowest non-zero frequencies. The remaining matching task only involves vertex shift and rotation about the z-axis. Our approach is inspired by the observation that the traditional Fourier transform of a 1D signal is equivalent to the decomposition of the signal into a linear combination of the eigenvectors of a smoothing operator. It turns out that our FD normalization is equivalent to aligning the limit plane approached by the sequence of progressively smoothed 3D contours with the xy-plane.
使用归一化傅立叶描述子的三维轮廓形状匹配
在本文中,我们开发了一个简单的特征空间匹配算法,用于封闭的三维轮廓。我们的算法依赖于一种新的方法,该方法将三维轮廓的傅里叶描述子(FD)相对于其最低非零频率对应的两个FD系数进行归一化。剩下的匹配任务只涉及顶点移动和绕z轴旋转。我们的方法的灵感来自于观察,即一维信号的传统傅里叶变换相当于将信号分解为平滑算子的特征向量的线性组合。结果表明,我们的FD归一化相当于将逐步平滑的3D轮廓序列所接近的极限平面与xy平面对齐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信