Estimation of load-side position of two mass resonant systems using MEMS accelerometers

Koji Watanabe, Kazuaki Ito, M. Iwasaki, R. Antonello, R. Oboe
{"title":"Estimation of load-side position of two mass resonant systems using MEMS accelerometers","authors":"Koji Watanabe, Kazuaki Ito, M. Iwasaki, R. Antonello, R. Oboe","doi":"10.1109/AMC.2016.7496356","DOIUrl":null,"url":null,"abstract":"This paper presents a load position estimation methodology of a linear motor driven table system using a MEMS accelerometer. The system is composed of a table and a load connected via an elastic beam attached on the table. In order to improve the performance of the load positioning, the load position measurement would be important. However it might be difficult to place position sensors on the load from the viewpoint of cost saving and available space. In this research, the load acceleration measured by a low cost and small size MEMS accelerometer and the motor angle acquired by a linear encoder are utilized to the Kalman filter for estimating the position information at the load side as well as the sensor bias of the accelerometer. In the Kalman filter design, the discrete time plant system is needed, where the discretization method should be selected appropriately to improve estimation performance especially for two mass resonant systems. The effectiveness of the proposed estimation methodology has been verified by experiments using a linear motor driven table system.","PeriodicalId":273847,"journal":{"name":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2016.7496356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a load position estimation methodology of a linear motor driven table system using a MEMS accelerometer. The system is composed of a table and a load connected via an elastic beam attached on the table. In order to improve the performance of the load positioning, the load position measurement would be important. However it might be difficult to place position sensors on the load from the viewpoint of cost saving and available space. In this research, the load acceleration measured by a low cost and small size MEMS accelerometer and the motor angle acquired by a linear encoder are utilized to the Kalman filter for estimating the position information at the load side as well as the sensor bias of the accelerometer. In the Kalman filter design, the discrete time plant system is needed, where the discretization method should be selected appropriately to improve estimation performance especially for two mass resonant systems. The effectiveness of the proposed estimation methodology has been verified by experiments using a linear motor driven table system.
用MEMS加速度计估计两个质量谐振系统的负载侧位置
提出了一种利用MEMS加速度计对直线电机驱动的工作台系统进行负载位置估计的方法。该系统由一个工作台和一个通过连接在工作台上的弹性梁连接的负载组成。为了提高负载定位的性能,对负载位置的测量是非常重要的。然而,从节省成本和可用空间的角度来看,在负载上放置位置传感器可能是困难的。在本研究中,利用低成本、小尺寸的MEMS加速度计测量的负载加速度和线性编码器获取的电机角度,利用卡尔曼滤波估计负载侧的位置信息以及加速度计的传感器偏置。在卡尔曼滤波器设计中,需要对离散时间系统进行设计,需要适当选择离散化方法以提高估计性能,特别是对两个质量共振系统。用直线电机驱动的工作台系统进行了实验,验证了所提估计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信