Intelligent Reflecting Surface Configuration Using Adaptive Quantization and Neural Prior

Tomer Fireaizen, D. Ben-David, Shaked Hadad, G. Metzer, Nir Kurland, Sima Etkind, P. Lifshits, Y. Moshe, I. Cohen
{"title":"Intelligent Reflecting Surface Configuration Using Adaptive Quantization and Neural Prior","authors":"Tomer Fireaizen, D. Ben-David, Shaked Hadad, G. Metzer, Nir Kurland, Sima Etkind, P. Lifshits, Y. Moshe, I. Cohen","doi":"10.1109/comcas52219.2021.9628995","DOIUrl":null,"url":null,"abstract":"Intelligent Reflective Surface (IRS) is a promising technology for improving the data transmission rate in hard direct channel conditions. In this paper, we describe our solution to estimate the relevant channels and configure the IRS for efficient wireless communications, as part of the 2021 IEEE Signal Processing Cup (SP Cup) competition. First, we estimate the wireless channel and then find an IRS configuration that maximizes the rate of that channel. We begin with the provided far-from-optimal IRS configurations and apply an iterative optimization technique based on gradient descent and adaptive quantization. Further optimization is obtained by training a deep generative neural network to find a configuration that maximizes the rate function. Compared to the best provided configurations that provide a weighted average rate of 104.07 Mbit/s, the best configurations we discovered provide a significantly higher average rate of 120.70 Mbit/s. Non-IRS based solution provides an average rate of 4.38 Mbit/s.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9628995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Intelligent Reflective Surface (IRS) is a promising technology for improving the data transmission rate in hard direct channel conditions. In this paper, we describe our solution to estimate the relevant channels and configure the IRS for efficient wireless communications, as part of the 2021 IEEE Signal Processing Cup (SP Cup) competition. First, we estimate the wireless channel and then find an IRS configuration that maximizes the rate of that channel. We begin with the provided far-from-optimal IRS configurations and apply an iterative optimization technique based on gradient descent and adaptive quantization. Further optimization is obtained by training a deep generative neural network to find a configuration that maximizes the rate function. Compared to the best provided configurations that provide a weighted average rate of 104.07 Mbit/s, the best configurations we discovered provide a significantly higher average rate of 120.70 Mbit/s. Non-IRS based solution provides an average rate of 4.38 Mbit/s.
基于自适应量化和神经先验的智能反射面配置
智能反射面(IRS)是一种很有前途的提高硬直接信道条件下数据传输速率的技术。在本文中,我们描述了我们的解决方案,以估计相关信道并配置IRS以实现高效的无线通信,作为2021年IEEE信号处理杯(SP杯)竞赛的一部分。首先,我们估计无线信道,然后找到使该信道的速率最大化的IRS配置。我们从提供的远非最优的IRS配置开始,并应用基于梯度下降和自适应量化的迭代优化技术。进一步的优化是通过训练一个深度生成神经网络来找到一个最大化速率函数的配置。与提供的最佳配置(加权平均速率为104.07 Mbit/s)相比,我们发现的最佳配置提供了明显更高的平均速率,为120.70 Mbit/s。非irs解决方案的平均速率为4.38 Mbit/s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信