Selective Face Deidentification with End-to-End Perceptual Loss Learning

Blaž Meden, P. Peer, V. Štruc
{"title":"Selective Face Deidentification with End-to-End Perceptual Loss Learning","authors":"Blaž Meden, P. Peer, V. Štruc","doi":"10.1109/IWOBI.2018.8464214","DOIUrl":null,"url":null,"abstract":"Privacy is a highly debatable topic in the modern technological era. With the advent of massive video and image data (which in a lot of cases contains personal information on the recorded subjects), there is an imminent need for efficient privacy protection mechanisms. To this end, we develop in this work a novel Face Deidentification Network (FaDeNet) that is able to alter the input faces in such a way that automated recognition fail to recognize the subjects in the images, while this is still possible for human observers. FaDeNet is based an encoder-decoder architecture that is trained to auto-encode the input image, while (at the same time) minimizing the recognition performance of a secondary network that is used as an socalled identity critic in FaDeNet. We present experiments on the Radbound Faces Dataset and observe encouraging results.","PeriodicalId":127078,"journal":{"name":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2018.8464214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Privacy is a highly debatable topic in the modern technological era. With the advent of massive video and image data (which in a lot of cases contains personal information on the recorded subjects), there is an imminent need for efficient privacy protection mechanisms. To this end, we develop in this work a novel Face Deidentification Network (FaDeNet) that is able to alter the input faces in such a way that automated recognition fail to recognize the subjects in the images, while this is still possible for human observers. FaDeNet is based an encoder-decoder architecture that is trained to auto-encode the input image, while (at the same time) minimizing the recognition performance of a secondary network that is used as an socalled identity critic in FaDeNet. We present experiments on the Radbound Faces Dataset and observe encouraging results.
基于端到端感知损失学习的选择性人脸去识别
在现代科技时代,隐私是一个极具争议的话题。随着海量视频和图像数据的出现(在很多情况下,这些数据包含了被记录主体的个人信息),迫切需要有效的隐私保护机制。为此,我们在这项工作中开发了一种新颖的人脸去识别网络(FaDeNet),它能够以一种自动识别无法识别图像中的主体的方式改变输入的人脸,而这对于人类观察者来说仍然是可能的。FaDeNet基于编码器-解码器架构,该架构经过训练可以对输入图像进行自动编码,同时(同时)最大限度地降低二级网络的识别性能,二级网络在FaDeNet中被用作所谓的身份评论家。我们在Radbound Faces数据集上进行了实验,并观察到令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信