Scale-based clustering using the radial basis function network

S. Chakravarthy, Joydeep Ghosh
{"title":"Scale-based clustering using the radial basis function network","authors":"S. Chakravarthy, Joydeep Ghosh","doi":"10.1109/ICNN.1994.374299","DOIUrl":null,"url":null,"abstract":"Adaptive learning dynamics of the radial basis function network (RBFN) are compared with a scale-based clustering technique and a relationship between the two is pointed out. Using this link, it is shown how scale-based clustering can be done using the RBFN, with the radial basis function (RBF) width as the scale parameter. The technique suggests the \"right\" scale at which the given data set must be clustered and obviates the need for knowing the number of clusters beforehand. We show how this method solves the problem of determining the number of RBF units and the widths required to get a good network solution.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114

Abstract

Adaptive learning dynamics of the radial basis function network (RBFN) are compared with a scale-based clustering technique and a relationship between the two is pointed out. Using this link, it is shown how scale-based clustering can be done using the RBFN, with the radial basis function (RBF) width as the scale parameter. The technique suggests the "right" scale at which the given data set must be clustered and obviates the need for knowing the number of clusters beforehand. We show how this method solves the problem of determining the number of RBF units and the widths required to get a good network solution.<>
基于尺度的径向基函数网络聚类
将径向基函数网络(RBFN)的自适应学习动态与基于尺度的聚类技术进行了比较,并指出了两者之间的关系。通过这个链接,展示了如何使用径向基函数(RBF)宽度作为尺度参数的RBFN来完成基于尺度的聚类。该技术提出了给定数据集必须聚类的“正确”规模,并避免了事先知道聚类数量的需要。我们展示了这种方法如何解决确定RBF单元的数量和获得良好网络解所需的宽度的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信