Machine learning for optical turbulence prediction in geographically similar regions

Bethany Campbell, K. McBryde, Erich Walter, Kyle R. Drexler
{"title":"Machine learning for optical turbulence prediction in geographically similar regions","authors":"Bethany Campbell, K. McBryde, Erich Walter, Kyle R. Drexler","doi":"10.1117/12.2681468","DOIUrl":null,"url":null,"abstract":"The refractive index structure parameter (Cn2) is of interest because it characterizes turbulence, which affects optical propagation through the atmosphere, including free space optical communications, laser propagation, and imaging. This work seeks to develop a geography-agnostic model that can predict Cn2 and received signal strength index (RSSI), with as few input parameters as possible. This work trains models including the Gaussian process regression, neural network, and bagged decision tree types, and use r-squared and root-mean squared error to compare model performance. Most of the data used to train and test the algorithms is collected in San Diego, a Csa-type climate (hot-summer Mediterranean climate) according to Köppen climate classification. We then demonstrate application of the trained models to a different site with similar climate, using available common input parameters, and quantitatively assess each model's respective efficacy.","PeriodicalId":434863,"journal":{"name":"Optical Engineering + Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Engineering + Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2681468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The refractive index structure parameter (Cn2) is of interest because it characterizes turbulence, which affects optical propagation through the atmosphere, including free space optical communications, laser propagation, and imaging. This work seeks to develop a geography-agnostic model that can predict Cn2 and received signal strength index (RSSI), with as few input parameters as possible. This work trains models including the Gaussian process regression, neural network, and bagged decision tree types, and use r-squared and root-mean squared error to compare model performance. Most of the data used to train and test the algorithms is collected in San Diego, a Csa-type climate (hot-summer Mediterranean climate) according to Köppen climate classification. We then demonstrate application of the trained models to a different site with similar climate, using available common input parameters, and quantitatively assess each model's respective efficacy.
地理相似区域光学湍流预测的机器学习
折射率结构参数(Cn2)之所以引起人们的兴趣,是因为它表征了湍流,湍流影响通过大气的光传播,包括自由空间光通信、激光传播和成像。这项工作旨在开发一种地理无关模型,该模型可以在尽可能少的输入参数下预测Cn2和接收信号强度指数(RSSI)。这项工作训练的模型包括高斯过程回归、神经网络和袋装决策树类型,并使用r平方和均方根误差来比较模型的性能。大多数用于训练和测试算法的数据是在圣地亚哥收集的,根据Köppen气候分类,圣地亚哥属于csa型气候(炎热的夏季地中海气候)。然后,我们演示了将训练好的模型应用于具有相似气候的不同地点,使用可用的公共输入参数,并定量评估每个模型各自的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信