Opinion mining using an LVQ neural network

Matthaios Stylianidis, E. Galiotou, C. Sgouropoulou, C. Skourlas
{"title":"Opinion mining using an LVQ neural network","authors":"Matthaios Stylianidis, E. Galiotou, C. Sgouropoulou, C. Skourlas","doi":"10.1145/3139367.3139416","DOIUrl":null,"url":null,"abstract":"Due to the increased use of social media in the past few years, a large volume of data has been accumulated which contains human sentiments and opinions. The field that deals with the automated extraction of opinions is named opinion mining. In this paper, we evaluate the performance of an LVQ neural network on document level analysis using a benchmark movie review dataset. Document-level opinion mining aims at classifying a text, usually as positive or negative based on its overall sentiment. In order to reduce the dimensions of the reviews' vector representations, we use the feature selection method Information Gain. We use an exhaustive grid search for hyperparameter tuning and two methods for performance evaluation: a nested cross validation and a non-nested 10-fold cross validation. We study the performance of our model for different numbers of selected features by Information-Gain.","PeriodicalId":436862,"journal":{"name":"Proceedings of the 21st Pan-Hellenic Conference on Informatics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st Pan-Hellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139367.3139416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Due to the increased use of social media in the past few years, a large volume of data has been accumulated which contains human sentiments and opinions. The field that deals with the automated extraction of opinions is named opinion mining. In this paper, we evaluate the performance of an LVQ neural network on document level analysis using a benchmark movie review dataset. Document-level opinion mining aims at classifying a text, usually as positive or negative based on its overall sentiment. In order to reduce the dimensions of the reviews' vector representations, we use the feature selection method Information Gain. We use an exhaustive grid search for hyperparameter tuning and two methods for performance evaluation: a nested cross validation and a non-nested 10-fold cross validation. We study the performance of our model for different numbers of selected features by Information-Gain.
基于LVQ神经网络的意见挖掘
在过去的几年里,由于社交媒体的使用越来越多,积累了大量的数据,其中包含了人类的情感和观点。处理意见自动提取的领域被称为意见挖掘。在本文中,我们使用基准电影评论数据集评估LVQ神经网络在文档级分析上的性能。文档级意见挖掘的目的是对文本进行分类,通常是根据文本的整体情绪进行正面或负面的分类。为了降低评论向量表示的维数,我们使用了特征选择方法信息增益。我们使用详尽的网格搜索进行超参数调优,并使用两种方法进行性能评估:嵌套交叉验证和非嵌套10倍交叉验证。我们通过信息增益来研究我们的模型在不同数量的选择特征下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信