Yu-Huei Chang, Jinn-Shyong Yang, Jou-Ming Chang, Yue-Li Wang
{"title":"Parallel Construction of Independent Spanning Trees on Parity Cubes","authors":"Yu-Huei Chang, Jinn-Shyong Yang, Jou-Ming Chang, Yue-Li Wang","doi":"10.1109/CSE.2014.225","DOIUrl":null,"url":null,"abstract":"Zehavi and Itai (1989) proposed the following conjecture: every k-connected graph has k independent spanning trees (ISTs for short) rooted at an arbitrary node. An n-dimensional parity cube, denoted by PQn, is a variation of hyper cubes with connectivity n and has many features superior to those of hyper cubes. Recently, Wang et al. (2012) confirm the ISTs conjecture by providing an O(N log N) algorithm to construct n ISTs rooted at an arbitrary node on PQn, where N=2n is the number of nodes in PQn. However, this algorithm is executed in a recursive fashion and thus is hard to be parallelized. In this paper, we present a non-recursive and fully parallelized approach to construct n ISTs rooted at an arbitrary node of PQn in O(log N) time using N processors. In particular, the constructing rule of spanning trees is simple and the proof of independency is easier than ever before.","PeriodicalId":258990,"journal":{"name":"2014 IEEE 17th International Conference on Computational Science and Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 17th International Conference on Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSE.2014.225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Zehavi and Itai (1989) proposed the following conjecture: every k-connected graph has k independent spanning trees (ISTs for short) rooted at an arbitrary node. An n-dimensional parity cube, denoted by PQn, is a variation of hyper cubes with connectivity n and has many features superior to those of hyper cubes. Recently, Wang et al. (2012) confirm the ISTs conjecture by providing an O(N log N) algorithm to construct n ISTs rooted at an arbitrary node on PQn, where N=2n is the number of nodes in PQn. However, this algorithm is executed in a recursive fashion and thus is hard to be parallelized. In this paper, we present a non-recursive and fully parallelized approach to construct n ISTs rooted at an arbitrary node of PQn in O(log N) time using N processors. In particular, the constructing rule of spanning trees is simple and the proof of independency is easier than ever before.