{"title":"Robust control of DC-DC boost converters for solar systems","authors":"Yeqin Wang, B. Ren, Qing-Chang Zhong","doi":"10.23919/ACC.2017.7963741","DOIUrl":null,"url":null,"abstract":"It is very challenging to control a DC-DC boost converter, due to its non-minimum phase phenomenon, model uncertainties (e.g., the parasitics), and external disturbances (e.g., input voltage change or load change). In this paper, a uncertainty and disturbance estimator (UDE)-based current-mode control (CMC) is proposed to address these problems. A new voltage dynamics is developed to avoid the non-minimum phase phenomenon. Then the UDE algorithm is adopted for both voltage-loop control design and current-loop control design to deal with model uncertainties, external disturbances, and the inductor current estimation error. Furthermore, a new control framework based on this UDE-based CMC is proposed for the grid integration of solar systems with voltage protection. Experimental results are provided to demonstrate the effectiveness and robustness of the proposed strategies.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
It is very challenging to control a DC-DC boost converter, due to its non-minimum phase phenomenon, model uncertainties (e.g., the parasitics), and external disturbances (e.g., input voltage change or load change). In this paper, a uncertainty and disturbance estimator (UDE)-based current-mode control (CMC) is proposed to address these problems. A new voltage dynamics is developed to avoid the non-minimum phase phenomenon. Then the UDE algorithm is adopted for both voltage-loop control design and current-loop control design to deal with model uncertainties, external disturbances, and the inductor current estimation error. Furthermore, a new control framework based on this UDE-based CMC is proposed for the grid integration of solar systems with voltage protection. Experimental results are provided to demonstrate the effectiveness and robustness of the proposed strategies.