Probabilistic Multileave for Online Retrieval Evaluation

Anne Schuth, Robert-Jan Bruintjes, Fritjof Buüttner, J. Doorn, C. Groenland, Harrie Oosterhuis, Cong-Nguyen Tran, Bastiaan S. Veeling, Jos van der Velde, R. Wechsler, David Woudenberg, M. de Rijke
{"title":"Probabilistic Multileave for Online Retrieval Evaluation","authors":"Anne Schuth, Robert-Jan Bruintjes, Fritjof Buüttner, J. Doorn, C. Groenland, Harrie Oosterhuis, Cong-Nguyen Tran, Bastiaan S. Veeling, Jos van der Velde, R. Wechsler, David Woudenberg, M. de Rijke","doi":"10.1145/2766462.2767838","DOIUrl":null,"url":null,"abstract":"Online evaluation methods for information retrieval use implicit signals such as clicks from users to infer preferences between rankers. A highly sensitive way of inferring these preferences is through interleaved comparisons. Recently, interleaved comparisons methods that allow for simultaneous evaluation of more than two rankers have been introduced. These so-called multileaving methods are even more sensitive than their interleaving counterparts. Probabilistic interleaving--whose main selling point is the potential for reuse of historical data--has no multileaving counterpart yet. We propose probabilistic multileave and empirically show that it is highly sensitive and unbiased. An important implication of this result is that historical interactions with multileaved comparisons can be reused, allowing for ranker comparisons that need much less user interaction data. Furthermore, we show that our method, as opposed to earlier sensitive multileaving methods, scales well when the number of rankers increases.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Online evaluation methods for information retrieval use implicit signals such as clicks from users to infer preferences between rankers. A highly sensitive way of inferring these preferences is through interleaved comparisons. Recently, interleaved comparisons methods that allow for simultaneous evaluation of more than two rankers have been introduced. These so-called multileaving methods are even more sensitive than their interleaving counterparts. Probabilistic interleaving--whose main selling point is the potential for reuse of historical data--has no multileaving counterpart yet. We propose probabilistic multileave and empirically show that it is highly sensitive and unbiased. An important implication of this result is that historical interactions with multileaved comparisons can be reused, allowing for ranker comparisons that need much less user interaction data. Furthermore, we show that our method, as opposed to earlier sensitive multileaving methods, scales well when the number of rankers increases.
基于概率多leave的在线检索评价
信息检索的在线评价方法使用用户点击等隐式信号来推断排名者之间的偏好。推断这些偏好的一种高度敏感的方法是通过交错比较。最近,已经引入了允许同时评估两个以上排名的交错比较方法。这些所谓的多重离开方法甚至比交错离开方法更加敏感。概率交错——其主要卖点是历史数据重用的潜力——目前还没有对应的多间隔。我们提出了概率多leave,并实证证明了它具有高度的敏感性和无偏性。该结果的一个重要含义是,可以重用与多叶比较的历史交互,从而允许需要更少用户交互数据的排名比较。此外,我们表明,与早期的敏感多离开方法相反,当排名器数量增加时,我们的方法可以很好地扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信