Classifying the bugs using multi-class semi supervised support vector machine

Ayan Nigam, Bhawna Nigam, Chayan Bhaisare, N. Arya
{"title":"Classifying the bugs using multi-class semi supervised support vector machine","authors":"Ayan Nigam, Bhawna Nigam, Chayan Bhaisare, N. Arya","doi":"10.1109/ICPRIME.2012.6208378","DOIUrl":null,"url":null,"abstract":"It is always important in the Software Industry to know about what types of bugs are getting reported into the applications developed or maintained by them. Categorizing bugs based on their characteristics helps Software Development team to take appropriate actions in order to reduce similar defects that might get reported in future releases. Defects or Bugs can be classified into many classes, for which a training set is required, known as the Class Label Data Set. If Classification is performed manually then it will consume more time and efforts. Also, human resource having expert testing skills & domain knowledge will be required for labelling the data. Therefore Semi Supervised Techniques are been used to reduce the work of labelling dataset, which takes some labeled with unlabeled dataset to train the classifier. In this paper Self Training Algorithm is used for Semi Supervised Learning and Winner-Takes-All strategy is applied to perform Multi Class Classification. This model provides Classification accuracy up to 93%.","PeriodicalId":148511,"journal":{"name":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2012.6208378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

It is always important in the Software Industry to know about what types of bugs are getting reported into the applications developed or maintained by them. Categorizing bugs based on their characteristics helps Software Development team to take appropriate actions in order to reduce similar defects that might get reported in future releases. Defects or Bugs can be classified into many classes, for which a training set is required, known as the Class Label Data Set. If Classification is performed manually then it will consume more time and efforts. Also, human resource having expert testing skills & domain knowledge will be required for labelling the data. Therefore Semi Supervised Techniques are been used to reduce the work of labelling dataset, which takes some labeled with unlabeled dataset to train the classifier. In this paper Self Training Algorithm is used for Semi Supervised Learning and Winner-Takes-All strategy is applied to perform Multi Class Classification. This model provides Classification accuracy up to 93%.
利用多类半监督支持向量机对缺陷进行分类
在软件行业中,了解由他们开发或维护的应用程序中报告了哪些类型的错误总是很重要的。根据缺陷的特征对它们进行分类,有助于软件开发团队采取适当的行动,以减少在未来版本中可能报告的类似缺陷。缺陷或bug可以被划分为许多类,这些类需要一个训练集,称为类标签数据集。如果手动执行分类,则会消耗更多的时间和精力。此外,需要具有专家测试技能和领域知识的人力资源来标记数据。因此,采用半监督技术来减少标记数据集的工作量,将一些标记的数据集与未标记的数据集进行训练。本文采用自训练算法进行半监督学习,采用赢者通吃策略进行多类分类。该模型的分类准确率高达93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信