{"title":"Query estimation by adaptive sampling","authors":"Yi-Leh Wu, D. Agrawal, A. E. Abbadi","doi":"10.1109/ICDE.2002.994781","DOIUrl":null,"url":null,"abstract":"The ability to provide accurate and efficient result estimations of user queries is very important for the query optimizer in database systems. In this paper, we show that the traditional estimation techniques with data reduction points of view do not produce satisfiable estimation results if the query patterns are dynamically changing. We further show that to reduce query estimation error, instead of accurately capturing the data distribution, it is more effective to capture the user query patterns. In this paper, we propose query estimation techniques that can adapt to user query patterns for more accurate estimates of the size of selection or range queries over databases.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
The ability to provide accurate and efficient result estimations of user queries is very important for the query optimizer in database systems. In this paper, we show that the traditional estimation techniques with data reduction points of view do not produce satisfiable estimation results if the query patterns are dynamically changing. We further show that to reduce query estimation error, instead of accurately capturing the data distribution, it is more effective to capture the user query patterns. In this paper, we propose query estimation techniques that can adapt to user query patterns for more accurate estimates of the size of selection or range queries over databases.