Evaluation of Segmentation Algorithms in CT Scanning

Seemeen Karimi, Xiaoqian Jiang, P. Cosman, H. Martz
{"title":"Evaluation of Segmentation Algorithms in CT Scanning","authors":"Seemeen Karimi, Xiaoqian Jiang, P. Cosman, H. Martz","doi":"10.1109/HISB.2012.64","DOIUrl":null,"url":null,"abstract":"We developed a method to evaluate the accuracy of segmentation algorithms. Oversegmentation, undersegmentation, missing and spurious labels may all appear concurrently in machine segmented images. Segmentation algorithms make systematic errors and have different optimal operating ranges. Existing methods of segmentation evaluation do not evaluate these details. Our method, based on multiple feature recovery, reports systematic errors and indicates optimal operating ranges of features, besides measuring overall errors. A knowledge of the magnitude and type of errors can be used for tuning or selecting segmentation algorithms. Although our method was developed for CT scanning for security, it is applicable to other fields, including medical imaging, where multi-object feature recovery, non-uniform costs and a knowledge of optimal operating ranges are helpful.","PeriodicalId":375089,"journal":{"name":"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HISB.2012.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We developed a method to evaluate the accuracy of segmentation algorithms. Oversegmentation, undersegmentation, missing and spurious labels may all appear concurrently in machine segmented images. Segmentation algorithms make systematic errors and have different optimal operating ranges. Existing methods of segmentation evaluation do not evaluate these details. Our method, based on multiple feature recovery, reports systematic errors and indicates optimal operating ranges of features, besides measuring overall errors. A knowledge of the magnitude and type of errors can be used for tuning or selecting segmentation algorithms. Although our method was developed for CT scanning for security, it is applicable to other fields, including medical imaging, where multi-object feature recovery, non-uniform costs and a knowledge of optimal operating ranges are helpful.
CT扫描分割算法的评价
我们开发了一种方法来评估分割算法的准确性。在机器分割的图像中,过分割、欠分割、缺失和虚假标签都可能同时出现。分割算法存在系统误差,且具有不同的最优操作范围。现有的分割评价方法没有对这些细节进行评价。我们的方法基于多个特征恢复,除了测量总体误差外,还可以报告系统误差并指出特征的最佳工作范围。对误差大小和类型的了解可以用于调整或选择分割算法。虽然我们的方法是为CT扫描的安全性而开发的,但它也适用于其他领域,包括医学成像,其中多目标特征恢复,不均匀成本和最佳操作范围的知识是有帮助的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信