Deepti Raghavan, P. Levis, M. Zaharia, Irene Zhang
{"title":"Breakfast of champions: towards zero-copy serialization with NIC scatter-gather","authors":"Deepti Raghavan, P. Levis, M. Zaharia, Irene Zhang","doi":"10.1145/3458336.3465287","DOIUrl":null,"url":null,"abstract":"Microsecond I/O will make data serialization a major bottleneck for datacenter applications. Serialization is fundamentally about data movement: serialization libraries coalesce and flatten in-memory data structures into a single transmittable buffer. CPU-based serialization approaches will hit a performance limit due to data movement overheads and be unable to keep up with modern networks. We observe that widely deployed NICs possess scatter-gather capabilities that can be re-purposed to accelerate serialization's core task of coalescing and flattening in-memory data structures. It is possible to build a completely zero-copy, zero-allocation serialization library with commodity NICs. Doing so introduces many research challenges, including using the hardware capabilities efficiently for a wide variety of non-uniform data structures, making application memory available for zero-copy I/O, and ensuring memory safety.","PeriodicalId":224944,"journal":{"name":"Proceedings of the Workshop on Hot Topics in Operating Systems","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Hot Topics in Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458336.3465287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Microsecond I/O will make data serialization a major bottleneck for datacenter applications. Serialization is fundamentally about data movement: serialization libraries coalesce and flatten in-memory data structures into a single transmittable buffer. CPU-based serialization approaches will hit a performance limit due to data movement overheads and be unable to keep up with modern networks. We observe that widely deployed NICs possess scatter-gather capabilities that can be re-purposed to accelerate serialization's core task of coalescing and flattening in-memory data structures. It is possible to build a completely zero-copy, zero-allocation serialization library with commodity NICs. Doing so introduces many research challenges, including using the hardware capabilities efficiently for a wide variety of non-uniform data structures, making application memory available for zero-copy I/O, and ensuring memory safety.