Quantity Modeling and Application of Multivariable Correlation Analysis

Cai Guoqiang, Jia Limin, Y. Jianwei, L. Haibo, Li Xi
{"title":"Quantity Modeling and Application of Multivariable Correlation Analysis","authors":"Cai Guoqiang, Jia Limin, Y. Jianwei, L. Haibo, Li Xi","doi":"10.1109/ICCIT.2009.320","DOIUrl":null,"url":null,"abstract":"Abstract-This study focuses on quantitative correlation problem of four Railway Parcel traffic parameters: Number of Initial trains (NIT), GDP of cities, Number of Parcel Traffic Agencies (NPTA) and Number of Parcel traffic Nodes (NPTN). It can be seen as a multivariable systems that called Multiple-Input Single-Output(MISO). Then ANN is used in to resolve the multivariable Correlation Analysis problems in China Railway Parcel forecast. Based on Artificial Neural Networks (ANN), the prediction of China Railway Parcel Traffic Volume is modeling. The model can effectively solve the variable multiple correlation problem. Good performance is demonstrated when Application proves the accuracy of the model and its contribution.","PeriodicalId":112416,"journal":{"name":"2009 Fourth International Conference on Computer Sciences and Convergence Information Technology","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Conference on Computer Sciences and Convergence Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract-This study focuses on quantitative correlation problem of four Railway Parcel traffic parameters: Number of Initial trains (NIT), GDP of cities, Number of Parcel Traffic Agencies (NPTA) and Number of Parcel traffic Nodes (NPTN). It can be seen as a multivariable systems that called Multiple-Input Single-Output(MISO). Then ANN is used in to resolve the multivariable Correlation Analysis problems in China Railway Parcel forecast. Based on Artificial Neural Networks (ANN), the prediction of China Railway Parcel Traffic Volume is modeling. The model can effectively solve the variable multiple correlation problem. Good performance is demonstrated when Application proves the accuracy of the model and its contribution.
多变量相关分析的数量建模与应用
摘要:本文主要研究了初始列车数量(NIT)、城市GDP、包裹交通代理数量(NPTA)和包裹交通节点数量(NPTN)四个铁路包裹交通参数的定量相关问题。它可以看作是一个多变量系统,称为多输入单输出(MISO)。然后利用人工神经网络解决了中国铁路包裹预测中的多变量相关分析问题。基于人工神经网络(ANN)对中国铁路包裹运输量进行了预测建模。该模型能有效地解决变量多重相关问题。应用实例证明了该模型的准确性及其贡献,并取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信