A full-text retrieval approach to content-based audio identification

Andreas Ribbrock, F. Kurth
{"title":"A full-text retrieval approach to content-based audio identification","authors":"Andreas Ribbrock, F. Kurth","doi":"10.1109/MMSP.2002.1203280","DOIUrl":null,"url":null,"abstract":"We give an overview on a novel framework for content-based multimedia retrieval. In this paper, we present an implementation for audio identification. This framework consists of an index-based search combining algebraic methods with classical full-text retrieval. In the main part of the paper, we propose several feature extractors which may be used for indexing the PCM audio data. We give an overview on our test results containing performance data (e.g. query response times), memory requirements (e.g., index size), and robustness issues. The size of our index turns out to be only a 1/1000th to about 1/15000th of the original PCM material depending on the required granularity for identifying a piece of audio.","PeriodicalId":398813,"journal":{"name":"2002 IEEE Workshop on Multimedia Signal Processing.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE Workshop on Multimedia Signal Processing.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2002.1203280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We give an overview on a novel framework for content-based multimedia retrieval. In this paper, we present an implementation for audio identification. This framework consists of an index-based search combining algebraic methods with classical full-text retrieval. In the main part of the paper, we propose several feature extractors which may be used for indexing the PCM audio data. We give an overview on our test results containing performance data (e.g. query response times), memory requirements (e.g., index size), and robustness issues. The size of our index turns out to be only a 1/1000th to about 1/15000th of the original PCM material depending on the required granularity for identifying a piece of audio.
基于内容的音频识别的全文检索方法
本文概述了一种基于内容的多媒体检索框架。在本文中,我们提出了一个音频识别的实现。该框架包括基于索引的搜索,将代数方法与经典全文检索相结合。在论文的主要部分,我们提出了几种可用于PCM音频数据索引的特征提取器。我们概述了我们的测试结果,包括性能数据(例如查询响应时间)、内存需求(例如索引大小)和鲁棒性问题。根据识别音频片段所需的粒度,我们的索引大小仅为原始PCM材料的1/1000到1/15000。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信